Skip to main content
Log in

Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A whole-cell biocatalytic system for the production of cadaverine from l-lysine has been developed. Among the investigated lysine decarboxylases from different microorganisms, Escherichia coli LdcC showed the best performance on cadaverine synthesis when E. coli XL1-Blue was used as the host strain. Six different strains of E. coli expressing E. coli LdcC were investigated and recombinant E. coli XL1-Blue, BL21(DE3) and W were chosen for further investigation since they showed higher conversion yield of lysine into cadaverine. The effects of substrate pH, substrate concentrations, buffering conditions, and biocatalyst concentrations have been investigated. Finally, recombinant E. coli XL1-Blue concentrated to an OD600 of 50, converted 192.6 g/L (1317 mM) of crude lysine solution, obtained from an actual lysine manufacturing process, to 133.7 g/L (1308 mM) of cadaverine with a molar yield of 99.90 %. The whole-cell biocatalytic system described herein is expected to be applicable to the development of industrial bionylon production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anastassiadis S (2007) l-lysine fermentation. Recent Pat Biotechnol 1:11–24

    Article  CAS  PubMed  Google Scholar 

  2. Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317

    Article  CAS  PubMed  Google Scholar 

  3. Fothergill JC, Guest JR (1977) Catabolism of l-lysine by Pseudomonas aeruginosa. J Gen Microbiol 99:139–155

    Article  CAS  PubMed  Google Scholar 

  4. Hermosín I, Chicón RM, Cabezudo MD (2003) Free amino acid composition and botanical origin of honey. Food Chem 83:263–268

    Article  Google Scholar 

  5. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kind S, Jeong WK, Schröder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4):341–351

    Article  CAS  PubMed  Google Scholar 

  7. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth G, Zelder O, Wittmann C (2014) From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123

    Article  CAS  PubMed  Google Scholar 

  8. Kircher M, Pfefferle W (2001) The fermentative production of l-lysine as an animal feed additive. Chemosphere 43:27–31

    Article  CAS  PubMed  Google Scholar 

  9. Lemonnier M, Lane D (1998) Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144:751–760

    Article  CAS  PubMed  Google Scholar 

  10. Le Vo TD, Ko JS, Park SJ, Lee SH, Hong SH (2013) Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. J Ind Microbiol Biotechnol 40(8):927–933

    Article  CAS  PubMed  Google Scholar 

  11. Mimitsuka T, Sawai H, Masahiro Hatsu, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  PubMed  Google Scholar 

  12. Nishi K, Endo S, Mori Y, Totsuka K, Hirao Y (2005) Method for producing cadaverine decarboxylase. US Pat US 2005(0003497):A1

    Google Scholar 

  13. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104:7797–7802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 36:885–892

    Article  CAS  PubMed  Google Scholar 

  15. Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16:42–47

    Article  CAS  PubMed  Google Scholar 

  16. Park SJ, Jang Y-A, Lee H, Park A-R, Yang JE, Shin J, Oh YH, Song BK, Jegal J, Lee SH, Lee SY (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid containing polyhydroxyalkanoates (PHAs). Metab Eng 20:20–28

    Article  CAS  PubMed  Google Scholar 

  17. Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH (2014) High-level conversion of l-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Biotechnol J 9:1322–1328

    Article  CAS  PubMed  Google Scholar 

  18. Pukina AV, Boeriu CG, Scott EL, Sanders JPM, Franssena MCR (2010) An efficient enzymatic synthesis of 5-aminovaleric acid. J Mol Catal B Enzym 65:58–62

    Article  Google Scholar 

  19. Nanami S, Takashi M, Hideki S, Kenji S (2014) Method for producing cadaverine. WO 2014(0004576):A1

    Google Scholar 

  20. Neely MN, Dell CL, Olson ER (1994) Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Bacteriol 176:3278–3285

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20

    Article  PubMed Central  PubMed  Google Scholar 

  22. Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108(1):93–103

    Article  CAS  PubMed  Google Scholar 

  23. Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL (2005) Multiple and Interconnected Pathways for l-Lysine Catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schneider J, Wendisch V (2011) Biotechnological production of polyamine by bacteria: recent achievements and future perspectives. Appl Miocrobiol Biotechnol 91:17–30

    Article  CAS  Google Scholar 

  25. Volkert M, Zelder O, Ernst B, Jeong WK (2010) Method for fermentatively producing 1,5-diaminopentane. US Pat US 2010(0292429):A1

    Google Scholar 

  26. Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H (1997) The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72(3):167–172

    Article  CAS  PubMed  Google Scholar 

  27. Zelder O, Jeong WK, Klopprogge C, Herold A, Schroeder H (2007) Process for the production of cadaverine. WO 2007(113127):A1

    Google Scholar 

Download references

Acknowledgments

This work was supported by Industrial Strategic Technology Development Program (10047910, Production of biobased cadaverine and polymerization of Bio-polyamide 510) funded by the Ministry of Trade, Industry & Energy (MOTEI, Korea) and 2014 Research Fund of Myongji University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyungmoon Park or Si Jae Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.H., Kang, KH., Kwon, M.J. et al. Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. J Ind Microbiol Biotechnol 42, 1481–1491 (2015). https://doi.org/10.1007/s10295-015-1678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1678-6

Keywords

Navigation