Skip to main content
Log in

Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Glucose dehydrogenase (GDH) locates in the cytoplasmic membrane of Gluconacetobacter xylinus oxidizes glucose to gluconic acid that decreases the conversion of glucose to bacterial cellulose (BC). In this study, a mutant of G. xylinus was generated by knocking-out the membrane bound GDH gene via homologous recombination of a defect GDH gene. The production of BC by G. xylinus mutant (GDH-KO strain) using glucose as a carbon source was investigated. Without the membrane bound GDH activity, the mutant strain still produces BC and increases glucose utilization efficiency for cellulose biosynthesis. In contrast, the wild-type strain oxidized a large fraction of glucose to gluconic acid that decreased the conversion yield of glucose to BC. Our results showed that the BC production from GDH-KO strain was about 40 and 230% higher than that of wild-type strain in static and shaken culture, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czaja, W. K., D. J. Young, M. Kawecki, and R. M. Brown Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol. 8: 1–12.

    Article  CAS  Google Scholar 

  2. Svensson, A., E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gatenholm (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419–431.

    Article  CAS  Google Scholar 

  3. Jonas, R. and L. F. Farah (1998) Production and application of microbial cellulose. Polym. Degrad. Stabil. 59: 101–106.

    Article  CAS  Google Scholar 

  4. Trovatti, E., L. S. Serafim, C. S. Freire, A. J. Silvestre, and C. P. Neto (2011) Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory. Carbohydr. Polym. 86: 1417–1420.

    Article  CAS  Google Scholar 

  5. Shigematsu, T., K. Takamine, M. Kitazato, T. Morita, T. Naritomi, S. Morimura, and K. Kida (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J. Biosci. Bioeng. 99: 415–422.

    Article  CAS  Google Scholar 

  6. Vandamme, E. J., S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf (1998) Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stabil. 59: 93–99.

    Article  CAS  Google Scholar 

  7. Masaoka, S., T. Ohe, and N. Sakota (1993) Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75: 18–22.

    Article  CAS  Google Scholar 

  8. Verschuren, P. G., T. D. Cardona, M. J. R. Nout, K. D. De Gooijer, and J. C. Van Den Heuvel (2000) Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. J. Biosci. Bioeng. 89: 414–419.

    Article  CAS  Google Scholar 

  9. De Wulf, P., K. Joris, and E. J. Vandamme (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J. Chem. Technol. Biotechnol. 67: 376–380.

    Article  Google Scholar 

  10. Seto, A., Y. Kojima, N. Tonouchi, T. Tsuchida, and F. Yoshinaga (1997) Screening of bacterial cellulose-producing Acetobacter strains suitable for sucrose as a carbon source. Biosci. Biotechnol. Biochem. 61: 735–736.

    Article  CAS  Google Scholar 

  11. Bae, J. W., J. H. Han, M. S. Park, S. G. Lee, E. Y. Lee, Y. J. Jeong, and S. Park (2006) Development of recombinant Pseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide. Biotechnol. Bioproc. Eng. 11: 530–537.

    Article  CAS  Google Scholar 

  12. Thurner, C., C. Vela, L. Thöny-Meyer, L. Meile, and M. Teuber (1997) Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch. Microbiol. 168: 81–91.

    Article  CAS  Google Scholar 

  13. Cleton-Jansen, A. M., S. Dekker, P. Van de Putte, and N. Goosen (1991) A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase in Gluconobacter oxydans. Mol. Gen. Genet. 229: 206–212.

    Article  CAS  Google Scholar 

  14. Matsushita, K. and M. Ameyama (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol. 89: 149–154.

    Article  CAS  Google Scholar 

  15. Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Gonçalves-Miśkiewicz, M. Turkiewicz, and S. Bielecki (2002) Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 29: 189–195.

    Article  CAS  Google Scholar 

  16. Ross, P., R. Mayer, and M. Benziman (1991) Cellulose biosynthesis and function in bacteria. Microbiol. Mol. Biol. Rev. 55: 35–38.

    CAS  Google Scholar 

  17. Jae, Y. J., K. P. Joong, and N. C. Ho (2005) Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enz. Microb. Technol. 37: 347–354.

    Article  Google Scholar 

  18. Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9: 383–388.

    Article  CAS  Google Scholar 

  19. Shoda, M. and Y. Sugano (2005) Recent advances in bacterial cellulose production. Biotechnol. Bioproc. Eng. 10: 1–8.

    Article  CAS  Google Scholar 

  20. Tantratian, S., P. Tammarate, W. Krusong, P. Bhattarakosol, and A. Phunsri (2005) Effect of dissolved oxygen on cellulose production by Acetobacter sp. J. Sci. Res. Chula Univ. 30: 179–186.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chia-Hung Kuo or Cheng-Kang Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CH., Teng, HY. & Lee, CK. Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement. Biotechnol Bioproc E 20, 18–25 (2015). https://doi.org/10.1007/s12257-014-0316-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0316-x

Keywords

Navigation