Skip to main content
Log in

Development of recombinantPseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently isolated,Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e.>99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of thestyAB gene that was used as host. This indicates that the copy number ofstyAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furuhashi, K. (1992) Biological routes to optically active epoxides. pp. 167–186. In: A. N. Collins, G. N. Sheldrake, and J. Crosby (eds.). Chirality in Industry. Wiley, Chichester, UK.

    Google Scholar 

  2. Kim, H. S., J.-H. Lee, S. Park, and E. Y. Lee (2004) Biocatalytic preparation of chiral epichlorohydrins using recombinantPichia pastoris expressing epoxide hydrolase ofRhodotorula glutinis.Biotechnol. Bioprocess. Eng. 9: 62–64.

    Article  CAS  Google Scholar 

  3. Choi, W. J. and C. Y. Choi (2005) Production of chiral epoxides: epoxide hydrolase-catalyzed enantioselective hydrolysis.Biotechnol. Bioprocess Eng. 10: 167–179.

    Article  CAS  Google Scholar 

  4. Beltrametti, F., A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro (1997) Sequencing and functional analysis of styrene catabolism genes fromPseudomonas fluorescens ST.Appl. Environ. Microbiol. 63: 2232–2239.

    CAS  Google Scholar 

  5. O'Connor, K., C. M. Buckley, S. Hartmans and A. D. Dobson (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation byPseudomonas putida CA-3.Appl. Environ. Microbiol. 61: 544–548.

    Google Scholar 

  6. Hartmans, S., M. J. van der Werf, and J. A. de Bont (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase.Appl. Environ. Microbiol. 56: 1347–1351.

    CAS  Google Scholar 

  7. Van Beilen, J. B., W. A. Duetz, A. Schmid, and B. Witholt (2003) Practical issue in the application of oxygenases.Trends Biotechnol. 21: 170–177.

    Article  Google Scholar 

  8. Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinantEscherichia coli synthesizing styrene monooxygenase.Biotechnol. Bioeng. 80: 33–41.

    Article  CAS  Google Scholar 

  9. Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S.-G. Lee, and S. Park (2006) Characterization of styrene catabolic genes ofPseudomonas putida SN1 and construction of a recombinantEscherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide.J. Microbiol. Biotechnol. 16: 1032–1040.

    CAS  Google Scholar 

  10. Chang, H.-L. and L. Alvarez-Cohen (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluence, or phenol.Biotechnol. Bioeng. 45: 440–449.

    Article  CAS  Google Scholar 

  11. Lee, E. Y., J. M. Kang, and S. Park (2003) Evaluation of transformation capacity for degradation of ethylene chlorides byMethylosinus trichosporium OB3b.Biotechnol. Bioprocess Eng. 8: 309–312.

    Article  CAS  Google Scholar 

  12. Kang, J., E. Y. Lee, and S. Park (2001) Co-metabolic biodegradation of trichloroethylene byMethylosinus trichosporium is stimulated by low concentrations methane or methanol.Biotechnol. Lett. 23: 1877–1882.

    Article  CAS  Google Scholar 

  13. Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. de Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents.Trends Biotechnol. 12: 409–415.

    Article  CAS  Google Scholar 

  14. Choi, K. O., S. H. Song, and Y. J. Yoo (2004) Permeabilization ofOchrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst.Biotechnol. Bioprocess Eng. 9: 147–150.

    Article  CAS  Google Scholar 

  15. Panke, S., V. de Lorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications.Appl. Environ. Microbiol. 65: 5619–5623.

    CAS  Google Scholar 

  16. Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt (2000) Production of enantiopure styrene oxide by recombinantEscherichia coli synthesizing a two-component styrene monooxygenase.Biotechnol. Bioeng. 69: 91–100.

    Article  CAS  Google Scholar 

  17. Kieboom, J., J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra (1998) Identification and molecular characterization of an efflux pump involved inPseudomonas putida S12 solvent tolerance.J. Biol. Chem. 273: 85–91.

    Article  CAS  Google Scholar 

  18. Schweizer, H. P. (1991)Escherichia-Pseudomonas shuttle vectors derived from pUC18/19.Gene 97: 109–121.

    Article  CAS  Google Scholar 

  19. Park, M. S., J. H. Han, S. S. Yoo, E. Y. Lee, S. G. Lee, and S. Park (2005) Degradation of styrene by a new isolatePseudomonas putida SN1.Kor. J. Chem. Eng. 22: 418–424.

    Article  CAS  Google Scholar 

  20. Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S.-G. Lee, and S. Park (2006) Production of (S)-styrene oxide using styrene oxide isomerase negative mutant ofPseudomonas putida SN1.Enzyme Microb. Technol. 39: 1264–1269.

    Article  CAS  Google Scholar 

  21. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989)Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  22. Padda, R. S., K. K. Pandey, S. Kaul, V. D. Nair, R. K. Jain, S. K. Basu, and T. Chakrabarti (2001) A novel gene encoding a 54 kDa polypeptide is essential for butane utilization byPseudomonas sp. IMT37.Microbiology 147: 2479–2491.

    CAS  Google Scholar 

  23. Speer, B. S., N. B. Shoemaker, and A. A. Salyers (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance.Clin. Microbiol. Rev. 5: 387–399.

    CAS  Google Scholar 

  24. Otto, K., K. Hofstetter, M. Rothlisberger, B. Whitholt, and A. Schmid (2004) Biochemical characterization of StyAB fromPseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.J. Bacteriol. 186: 5292–5302.

    Article  CAS  Google Scholar 

  25. Mooney, A., N. D. O'Leary, and A. D. W. Dobson (2006) Cloning and functional characterization of thestyE gene, involved in styrene transport inPseudomonas putida CA-3.Appl. Environ. Microbiol. 72: 1302–1309.

    Article  CAS  Google Scholar 

  26. Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway ofPseudomonas sp. strain VLB120.Appl. Environ. Microbiol. 64: 2032–2043.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, J.W., Han, J.H., Park, M.S. et al. Development of recombinantPseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide. Biotechnol Bioproc E 11, 530–537 (2006). https://doi.org/10.1007/BF02932079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932079

Keywords

Navigation