Skip to main content
Log in

Optimization of cultivation medium and fermentation parameters for lincomycin production by Streptomyces lincolnensis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Production of lincomycin by Streptomyces lincolnensis was studied by varying medium composition and environmental conditions. With the medium composition optimized by statistical experimental design (45 g/L soluble starch, 15 g/L sugar cane molasses, 13.33 g/L peptone water, 6.67 g/L NaNO3 and 4.0 g/L CaCO3), lincomycin production increased by 2 ∼ 3 fold compared to that obtained with un-optimized basal medium. Lincomycin production was further improved by optimizing culture conditions such as agitation speed, impeller type and pH under the optimized medium condition. The highest titer of 350 mg/L lincomycin was achieved from 240 h bioreactor culture. These results demonstrate that fermentation conditions for maximal lincomycin production by Streptomyces lincolnensis were optimized via biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spizek, J. and T. Rezanka (2004) Lincomycin, clindamycin and their application. Appl. Microbiol. Biotechnol. 64: 455–464.

    Article  CAS  Google Scholar 

  2. Argoudelis, A. D., J. H. Coats, and T. R. Pyke (1972) Lincomycin production. US Patent 3,697,380.

  3. Bergy, M. E., R. R. Herr, and D. J. Mason (1963) Antibiotic lincolnensin and method of production. US Patent 3,086,912.

    Google Scholar 

  4. Gomes, J., I. Gomes, H. Esterbauer, W. Kreiner, and W. Steiner (1989) Production of cellulases by a wild strain of Gliocladium virens: Optimization of fermentation medium and partial characterization of the enzymes. Appl. Microbiol. Biotechnol. 31: 601–608.

    Article  CAS  Google Scholar 

  5. Szakacs, G., G. Morovjan, and R. P. Tengerdy (1998) Production of lovastatin by a wild strain of Aspergillus terreus. Biotech. Lett. 20: 411–415.

    Article  CAS  Google Scholar 

  6. Sadik, A. S., P. P. Bibhu, J. Saleem, and A. Mohd (2007) Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl. Microbiol. Biotechnol. 73: 1054–1058.

    Google Scholar 

  7. Lee, S. G., Chun, and Y. Jeong (2008) Production medium optimization for Monascus biomass containing high content of Monacolin-K by using soybean flour substrates. Kor. J. Biotechnol. Bioeng. 23: 463–469.

    Google Scholar 

  8. Shanmugaprakash, M., J. Kirthika, J. Ragupathy, K. ilanee, and A. Manickam (2013) Statistical based media optimization and production of naringinase using Aspergillus brasiliensis 1344. Int. J. Biol. Macromol. 64: 443–452.

    Article  Google Scholar 

  9. Kumar, M., A. K. Jain, M. Ghosh, and A. Ganguli (2012) Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnol. Bioproc. Eng. 17: 606–616.

    Article  CAS  Google Scholar 

  10. Yoon, S. J., W. S. Shin, G. T. Chun, and Y. S. Jeong (2007) Optimization of production medium by response surface method and development of fermentation condition for Monascus pilosus culture. Kor. J. Biotechnol. Bioeng. 22: 288–296.

    Google Scholar 

  11. Hwang, C., J. Chang, J. Houng, C. Tsai, C. Lin, and H. Tsen (2012) Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the box-behnken method. Biotechnol. Bioproc. Eng. 174: 827–834.

    Article  Google Scholar 

  12. Gonzalez, J. E. and T. L. Miller (1985) Lincomycin In Comprehensive Biotechnology. Vol. 3, pp. 211–223, Pergamon Press, Oxford, UK.

    Google Scholar 

  13. Milner, J. A., D. J. Martin, and A. Smith (1996) Oxygen transfer conditions in the production of alpha-amylase by Bacillus amyloliquefaciens. Enz. Micro. Technol. 18: 507–512.

    Article  CAS  Google Scholar 

  14. Arjunwadkar, S. J., A. Saravanan, B. Pandit, and R. R. Kulkarni (1998) Optimizing the impeller combination for maximum holdup with minimum power consumption. Biochem. Eng. J. 1: 25–30.

    Article  Google Scholar 

  15. Wongsamuth, R. and R. M. Doran (1994) Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams. Biotechnol. Bioeng. 44: 481–488.

    Article  CAS  Google Scholar 

  16. Kougias, P. G., K. Boe, P. Tsapekos, and I. Anqelidaki (2014) Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour. Technol. 153: 198–205.

    Article  CAS  Google Scholar 

  17. Amanullah, A., L. S. Carrenon, B. Castro, E. Galindo, and A. W. Nienow (1998) The influence of impeller type in pilot scale xanthan fermentations. Biotechnol. Bioeng. 57: 95–108.

    Article  CAS  Google Scholar 

  18. Arjunwadkar, S. J., K. Saravanan, P. R. Kulkarni, and A. B. Pandit (1998) Gas-liquid mass transfer in dual impeller bioreactor. Biochem. Eng. J. 1: 99–106.

    Article  CAS  Google Scholar 

  19. Ahmed, S. U., P. Ranganathan, A. Pandey and S. Sivaraman (2010) Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor. J. Biosci. Bioeng. 109: 588–597.

    Article  CAS  Google Scholar 

  20. Garcia-Ochaoa, F. and E. Gomez (2009) Bioreactor scale-up & oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 27: 153–176.

    Article  Google Scholar 

  21. Young, M. D. and L. L. Kempe (1995) Effects of phosphate, glucose, and ammonium on cell growth and lincomycin production by Streptomyces lincolnensis in chemically defined media. Biotechnol. Bioeng. 27: 327–333.

    Article  Google Scholar 

  22. Asmus, P. A. and J. B. Landis (1983) Liquid chromatographic determination of lincomycin in fermentation beers. J. Chromatogr. 264: 241–248.

    Article  CAS  Google Scholar 

  23. Miller, G. L. (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar, Anal. Chem. 31: 426–428.

    CAS  Google Scholar 

  24. Dubios, M., K. A. Fillese, J. K. Hamilton, P. A. Rbers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  Google Scholar 

  25. Aharonowitz, Y. and A. L. Demain (1978) Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob. Agents Ch. 14: 159–164.

    Article  CAS  Google Scholar 

  26. Bu’Lock, J. D. and A. J. Powell (1965) Secondary metabolism an explanation in terms of induced enzyme mechanisms. Experientia. 21: 55–56.

    Article  Google Scholar 

  27. Sorensen, J. L. and H. Giese (2013) influence of carbohydrates on secondary metabolism in Fusarium avenaceum. Toxins. 5: 1655–1663.

    Article  Google Scholar 

  28. Aharonowitz, Y. (1980) Nitrogen metabolite regulation of antibiotic biosynthesis. Ann. Rev. Microbiol. 34: 209–233.

    Article  CAS  Google Scholar 

  29. Ye, R., Q. Wang, and X. Zhou (2009) Lincomycin, rational selection of high producing strain and improved fermentation by amino acids supplementation. Bioproc. Biosyst. Eng. 32: 521–529.

    Article  CAS  Google Scholar 

  30. Wang, S. J. and J. J. Zhong (1997) Comparison of O2 transfer characteristics between a new centrifugal impeller and a flatbladed turbine impeller. Biotechnol. Tech. 11: 763–767.

    Article  CAS  Google Scholar 

  31. Bakri, Y., P. Jacques, L. K. Shi, and P. Thonart (2002) Influence of a new axial impeller on K(L)a and xylanase production by Penicillium canescens 10–10c. Appl. Biochem. Biotechnol. 98: 1037–1048.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Seob Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Lee, MJ., Choi, YE. et al. Optimization of cultivation medium and fermentation parameters for lincomycin production by Streptomyces lincolnensis . Biotechnol Bioproc E 19, 1014–1021 (2014). https://doi.org/10.1007/s12257-014-0280-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0280-5

Keywords

Navigation