Skip to main content
Log in

Profiles of photosynthetic pigment accumulation and expression of photosynthesis-related genes in the marine cyanobacteria Synechococcus sp.: Effects of LED wavelengths

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Light quality is a significant environmental factor that influences photosynthetic pigments in cyanobacteria. In the present study, we illuminated the marine cyanobacteria Synechococcus sp. with white (350 ∼ 700 nm), red (630 nm), green (530 nm), and blue (450 nm) light emitting diodes (LEDs) and measured pigment levels (chlorophyll, carotenoid, and phycobiliprotein) and expression of photosynthesis-related genes (pebA, psbB, and psaE). The amount of photosynthetic pigments (total pigments, chlorophyll, and phycobiliproteins) was higher in the green and blue LED groups than in the white and red LED groups after 8 days of culture. The cells were prepared in a 1.5 mL solution for the analysis of the total pigments, chlorophyll, and carotenoid, and in a 2 mL for analysis of phycobiliproteins. The mRNA expression levels of pebA and psbB significantly increased after 8 days of cultivation under green and blue light, while the mRNA expression levels of psaE decreased. These results indicate that green and blue light increase the accumulation of photosynthetic pigments. In contrast red light induced mRNA expression of psaE and stimulated cell growth in Synechococcus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dring, M. J. (1988) Photocontrol of development in algae. Ann. Rev. Plant Physiol. 39: 157–174.

    Article  Google Scholar 

  2. Richardson, K., J. Beardall, and J. A. Raven (1983) Adaptations of unicellular algae to irradiance: An analysis of strategies. New Phytol. 93: 157–191.

    Article  Google Scholar 

  3. Sánchez-Saavedra, M. P. and D. Voltolina (1994) The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions. Comp. Biochem. Physiol. B107: 39–44.

    Google Scholar 

  4. Stomp, M., J. Huisman, L. Vörös, E. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10: 290–298.

    Article  Google Scholar 

  5. Li, W. K. W. (1994) Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol. Oceanogr. 39: 169–175.

    Article  CAS  Google Scholar 

  6. Liu, H. B., H. A. Nolla, and L. Campbell (1997) Prochlorococcus growth rate and contribution to primary production inthe equatorial and subtropical north pacific ocean. Aquat. Microb. Ecol. 12: 39–47.

    Article  Google Scholar 

  7. Vijaya, V. and N. Anand (2009) Blue light enhance the pigment synthesis in cyanobacterium Anabaena ambigua rao (nostacales). ARPN J. Agricul. Biol. Sci. 4: 1–8.

    Article  Google Scholar 

  8. Bennet, A. and L. Bogorad (1973) Complementary chromatic adaptation in filamentous blue green algae. J. Cell Biol. 58: 419–433.

    Article  Google Scholar 

  9. Tandeau, D. and N. T. Marsac (2003) Phycobiliproteins and phycobilisomes: The early observations. Photosynth. Res. 76: 197–205.

    Google Scholar 

  10. Morena, J., H. Rodriguey, V. A. Vargas, J. Rivas, and M. G. Guerrero (1995) Nitrogen fixing Cyanobacteria a source of phycobilin proteins pigments-composition and growth performance of then filamentous strains. J. Appl. Phycol. 7: 17–23.

    Article  Google Scholar 

  11. Chaneva, G., S. Furnadzhieva, K. Minkova, and J. Lukavsky (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum-a prospective hycobiliprotein-producing strain. J. Appl. Phycol. 19: 537–544.

    Article  CAS  Google Scholar 

  12. Korbee, N., F. L. Figueroa, and J. Aguilera (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol. B. 80: 71–78.

    Article  CAS  Google Scholar 

  13. Lönneporge, A., L. K. Lind, S. R. Kalla, P. Gustafsson, and G. Öquist (1985) Acclimation process in the light-harvesting system of cyanobacterium Anacystis nidulans following a light shift from white to red light. Plant Physiol. 78: 110–114.

    Article  Google Scholar 

  14. Millard, A., M. R. J. Clokie, D. A. Shub, and N. H. Mann (2004) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc. Natl. Acad. Sci. USA 101: 11007–11012.

    Article  CAS  Google Scholar 

  15. Lindell, D., J. D. Jaffe, Z. I. Johnson, G. M. Church, and S. W. Chisholm (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86–89.

    Article  CAS  Google Scholar 

  16. Alfonso, M., I. Perewoska, and D. Kirilovsky (2000) Redox controlof psbA gene expression in the cyanobacterium Synechocystis PCC 6803: Involvement of the cytochrome b6f complex. Plant Physiol. 122: 505–516.

    Article  CAS  Google Scholar 

  17. Sullivan, M. B., M. L. Coleman, P. Weigele, F. Rohwer, and S. W. Chisholm (2005) Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 3: e144.

    Article  Google Scholar 

  18. Barta, D. J., T. W. Tibitts, R. J. Bula, and R. C. Morrow (1992) Evaluation of light emitting diode characteristics for a space based plant irradiation source. Adv. Space. Res. 12: 141–149.

    Article  CAS  Google Scholar 

  19. Matthijs, H. C. P., H. Balke, B. M. A. Van Hes Kroon, L. R. Mur, and R. A. Binot (1996) Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol. Bioeng. 50: 98–107.

    Article  CAS  Google Scholar 

  20. Schubert, E. F. (2003) Light-Emitting Diodes. Cambridge University Press, Cambridge.

    Google Scholar 

  21. Shin, H. S., J. Lee, and C. Y. Choi (2011) Effects of LED light spectra on oxidative stress and the protective role of melatonin in relation to the daily rhythm of the yellowtail clownfish, Amphiprion clarkia. Comp. Biochem. Physiol. A 160: 221–228.

    Article  CAS  Google Scholar 

  22. Prézelin, B. B., H. F. Glover, B. Ver Hoven, D. Steingerg, H. A. Matlick, O. Schofield, N. Nelson, and M. Wyman (1989) Bluegreen light effects on light-limited rates of photosynthesis: Relationship to pigmentation and productivity estimates for Synechococcus population from the Sargasso Sea. Mar. Ecol. Prog. Ser. 54: 121–136.

    Article  Google Scholar 

  23. Walne, P. R. (1966) Experiments in the large-scale culture of the larvae of Ostrea edulis. L, Fishery Investigations (London) 25: 1–53.

    Google Scholar 

  24. Wellburn, A. R. (1994) The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144: 307–313.

    Article  CAS  Google Scholar 

  25. Blumwald, E. and E. Tel-Or (1982) Osmo regulation and cell composition in salt-adaptation of Nostoc muscorum. Arch. Microbiol. 132: 168–172.

    Article  CAS  Google Scholar 

  26. Figueroa, F. L., J. Aguilera, and F. X. Niell (1995) Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur. J. Phycol. 30: 11–18.

    Article  Google Scholar 

  27. Wood, N. B. and R. Haselkorn (1980) Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J. Bacteriol. 141: 1375–1385.

    CAS  Google Scholar 

  28. Elmorjani, K. and M. Herdman (1987) Metabolic control of phycocyanin degradation in the cyanobacterium Synechocystis PCC 6803: A glucose effect. J. Gen. Microbiol. 133: 1685–1694.

    CAS  Google Scholar 

  29. Botella-Pavía, P. and M. Rodríguez-Concepción (2006) Carotenoid biotechnology in plants fornutritionally improved foods. Physiol. Plant. 126: 369–381.

    Article  Google Scholar 

  30. Stahl, W. and H. Sies (2003) Antioxidant activity of carotenoids. Mol. Aspects Med. 24: 345–351.

    Article  CAS  Google Scholar 

  31. Dall’Osto, L., C. Lico, J. Alric, G. Giuliano, M. Havaux, and R. Bassi (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective protoprotection in vivo under strong light. BMC Plant Biol. 6: 32–32.

    Article  Google Scholar 

  32. Chen, M., Y. Li, D. Birch, and R. D. Willows (2012) A cyanobacterium that contains chlorophyll f-a red-absorbing photopigment. FEBS Lett. 586: 3249–3254.

    Article  CAS  Google Scholar 

  33. Glover, H. E., M. D. Keller, and R. W. Spinrad (1987) The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J. Exp. Mar. Biol. Ecol. 105: 137–159.

    Article  Google Scholar 

  34. Ashraf, M. and P. J. C. Harris (2013) Photosynthesis under stressful environments: An overview. Photosynth. 21: 163–190.

    Article  Google Scholar 

  35. Hauschild, C. A., M. C. Heather, H. J. G. Murter, and F. R. Pick (1991) Effect of spectral quality on growth and pigmentation of picocyanobacteria. J. Phycol. 27: 698–702.

    Article  Google Scholar 

  36. Sauer, J., U. Schreiber, R. Schmid, U. Völker, and K. Forchhammer (2001) Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol. 126: 233–243.

    CAS  Google Scholar 

  37. Aidar, E., S. M. F. Gianesella-Galvão, T. C. S. Sigaud, C. S. Asano, T. H. Liang, K.R. V. Rezende, M. K. Oishi, F. J. Aranha, G. M Milani, and M. A. L. Sandes (1994) Effects of light quality on growth biochemical composition and photosynthetic production in Cyclotella caspia Grunov and Tetraselmisgracilis Kylin Butcher. J. Exp. Mar. Biol. Ecol. 180: 175–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Young Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N.N., Shin, H.S., Park, H.G. et al. Profiles of photosynthetic pigment accumulation and expression of photosynthesis-related genes in the marine cyanobacteria Synechococcus sp.: Effects of LED wavelengths. Biotechnol Bioproc E 19, 250–256 (2014). https://doi.org/10.1007/s12257-013-0700-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0700-y

Keywords

Navigation