Skip to main content
Log in

Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes

  • Research Paper
  • Enzyme Biotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Amylomaltase and transglucosidase were combined to produce long-chain isomaltooligosaccharides (IMOs). IMOs are effective prebiotics that stimulate the growth of healthy bacteria in human intestines and thus promote better overall health. In this study, the p17bAMY amylomaltase was expressed from its gene, which had been directly isolated from soil samples, while transglucosidase was purchased and purified by a gel-filtration column. Crude amylomaltase was purified by heat treatment, Q-, and phenyl-sepharose column. The purified amylomaltase had a molecular weight of 57 kDa. Specificity on the substrates of the amylomaltase was also studied and it was found that this enzyme was able to catalyze transglucosylation activity using substrates G2 to G7. However, G3 was the most preferred substrate for the enzyme. Here, K m-G3 and k cat/K m were 23 mM and 1.72 × 108 mM/min, respectively. Amylomaltase and transglucosidase were tested both alone and in combination on a G3 substrate to study the efficient process for the IMOs production. The obtained products from the enzymatic reactions were monitored using the TLC analytical method and a densitometer. The amylomaltase led to products containing linear maltooligosaccharides, while the transglucosidase produced short-chain IMOs. Interestingly, when amylomaltase and transglucosidase were used in combination, long-chain IMOs with sizes larger than IMO4 were observed under the determined condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takaha, T. and S. M. Smith (1999) The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnol. Genet. Eng. 16: 257–280.

    Article  CAS  Google Scholar 

  2. Pugsley, A. P. and C. Dubreuil (1998) Molecular characterization of malQ, the structural gene for the Escherichia coli enzyme amylomaltase. Mol. Microbiol. 2: 473–479.

    Article  Google Scholar 

  3. Goda, S., O. Eissa, M. Akhtar, and N. Minton (1997) Molecular analysis of a Clostridium butyricum NCIMB 7423 gene encoding 4-alpha-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli. Microbiol. 143: 3287–3294.

    Article  CAS  Google Scholar 

  4. Jeon, B., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi, and H. Matsuzawa (1997) 4-alpha-glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis-enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248: 171–178.

    Article  CAS  Google Scholar 

  5. Terada, Y., K. Fujii, T. Takaha, and S. Okada (1999) Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Appl. Environ. Microb. 65: 910–915.

    CAS  Google Scholar 

  6. Bhuiyan, S. H., M. Kitaoka, and K. Hayashi (2003) A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B: Enzym. 22: 45–53.

    Article  CAS  Google Scholar 

  7. Kaper, T., B. Talik, T. J. Ettema, H. Bos, M. J. van der maarel, and L. Dijkhuizen (2005) Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl. Environ. Microb. 71: 5098–5106.

    Article  CAS  Google Scholar 

  8. Bang, B. Y., H. J. Kim, H. Y. Kim, M. Y. Baik, S. C. Ahn, C. H. Kim, and C. S. Park (2006) Cloning and overexpression of 4-α-glucanotransferase from Thermus brockianus (TBGT) in E. coli. J. Microbiol. Biotechnol. 16: 1809–1813.

    CAS  Google Scholar 

  9. Lee, B. H., D. K. Oh, and S. H. Yoo (2009) Characterization of 4-alpha-glucanotransferase from Synechocystis sp. PCC 6803 and its application to various corn starches. N. Biotechol. 26: 29–36.

    Article  Google Scholar 

  10. Srisimarat, W., A. Powviriyakul, J. Kaulpiboon, K. Krusong, W. Zimmermann, and P. Pongsawasdi (2010) A novel amylomaltase from Corynebacterium glutamicum and analysis of the large-ring cyclodextrin products. J. Incl. Phenom. Macro. 70: 369–375.

    Article  Google Scholar 

  11. Lin, T. P. and J. Preiss (1987) Characterization of D-enzyme (4-α-glucanotransferase) in arabidopsis leaf. Plant Physiol. 86: 260–265.

    Article  Google Scholar 

  12. Lee, H. S., J. H. Auh, H. G. Yoon, M. J. Kim, J. H. Park, S. S. Hong, M. H. Kang, T. J. Kim, T. W. Moon, J. W. Kim, and K. H. Park (2002) Cooperative action of alpha-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J. Agr. Food Chem. 50: 2812–2817.

    Article  CAS  Google Scholar 

  13. Gibson, G. R. and R. A. Rastal (2006) Prebiotics: Development & Application. pp. 42–46. John Wiley & Sons, Ltd., West Sussex, England.

    Book  Google Scholar 

  14. Goulas, A. K., D. A. Fisher, G. K. Grimble, A. S. Grandison, and R. A. Rastall (2004) Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enz. Microb. Technol. 35: 327–388.

    Article  CAS  Google Scholar 

  15. Pan, Y. C. and W. C. Lee (2005) Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol. Bioeng. 89: 797–804.

    Article  CAS  Google Scholar 

  16. Sawasdee, K. (2012) Expression and characterization of amylomaltase gene cloned directly from soil bacterial DNA. M. Sc. Thesis. Thammasat University, Bangkok, Thailand.

    Google Scholar 

  17. Bradford, M. M. (1976) A rapid and sensitive method for the qualitatively of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  18. Weber, K. and M. Osborn (1975) Proteins and SDS: Molecular weight determination on polyacrylamide gels and related procedures. pp. 179–233. In: H. Neurath, R. L. Hill, and C. Border (eds.). The Proteins. Academic Press, NY, USA.

    Google Scholar 

  19. Robyt, J. F. and R. Mukerjea (1994) Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohyd. Res. 251: 187–202.

    Article  CAS  Google Scholar 

  20. Vetere, A., A. Gamini, C. Campa, and S. Paoletti (2000) Regiospecific transglycolytic synthesis and structural characterization of 6-O-α-glucopyranosyl-glucopyranose (isomaltose). Biochem. Biophys. Res. Commum. 274: 99–104.

    Article  CAS  Google Scholar 

  21. Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, S. Chiba, and A. Kimura (2004) Purification and characterization of Acremonium implicatum α-glucosidase having regioselectivity for α-1,3-glucosidic linkage. Biochim. Biophys. Acta 1700: 189–198.

    Article  CAS  Google Scholar 

  22. Zhou, C., Y. Xue, Y. Zhang, Y. Zeng1, and Y. Ma (2009) Recombinant expression and characterization of Thermoanaerobactertengcongensis thermostable α-glucosidase with regioselectivity for high-yield isomalto oligosaccharides synthesis. J. Microbiol. Biotechnol. 19: 1547–1556.

    Article  CAS  Google Scholar 

  23. Kita, A., H. Matsui, A. Somoto, A. Kimura, M. Takata, and S. Chiba (1991) Substrate specificity and subsite affinities of crystalline alpha-glucosidase from Aspergillus niger. Agric. Biol. Chem. 55: 2327–2335.

    Article  CAS  Google Scholar 

  24. Lee, M. S., S. K. Cho, H. J. Eom, S. Y. Kim, T. J. Kim, and N. S. Han (2008) Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbiol. Biotechnol. 18: 1141–1145.

    CAS  Google Scholar 

  25. Kaneko, T., T. Kohmoto, H. Kikuchi, M. Shiota, and H. Lino (1994) Effect of isomaltooligosaccharides with different degrees of polymerization on human fecal Bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288–2290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarunee Kaulpiboon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudeekulthamrong, P., Sawasdee, K. & Kaulpiboon, J. Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes. Biotechnol Bioproc E 18, 778–786 (2013). https://doi.org/10.1007/s12257-012-0777-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0777-8

Keywords

Navigation