Skip to main content
Log in

A novel amylomaltase from Corynebacterium glutamicum and analysis of the large-ring cyclodextrin products

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Amylomaltase catalyzes the formation of large-ring cyclodextrins (LR-CDs) from starch. This study aims to construct the recombinant amylomaltase from Corynebacterium glutamicum and to characterize the purified enzyme with the emphasis on the profile of LR-CDs production. A novel amylomaltase from Corynebacterium glutamicum ATCC 13032 was cloned and expressed in Escherichia coli BL21 (DE3) using the expression vector pET-19b. The open reading frame of amylomaltase gene of 2,121 bp (encoding the polypeptide of 706 amino acid residues) was obtained with the N-terminal His-tag fragment of 69 bp attached before the start codon of the amylomaltase gene. The deduced amino acid sequence showed a low sequence identity (20–25%) to those thermostable amylomaltases from Thermus sp. The maximum enzyme activity was obtained when the recombinant cells were cultured at 37 °C for 2 h after induction with 0.4 mM isopropyl thio-β-D-galactoside (IPTG). The enzyme was 11-fold purified with a yield of 30% by a HiTrap affinity column. The purified amylomaltase showed a single band of 84 kDa on a 7.5% SDS-PAGE. When the enzyme acted on pea starch, it catalyzed an intramolecular transglucosylation (cyclization) reaction that produced LR-CDs or cycloamyloses (CA). The product profile was dependent on the incubation time and the enzyme concentration. Shorter incubation time gave larger LR-CDs as principal products. At 4 h incubation, the product was composed of a mixture of LR-CDs in the range of CD19–CD50, with CD27–28 as products with highest amount. It is noted that CD19 was the smallest product in all conditions tested. The enzyme also catalyzes intermolecular transglucosylation on various malto-oligosaccharides, with maltose as the smallest substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LR-CD:

Large-ring cyclodextrins

CA:

Cycloamylose

CD:

Cyclodextrin

4αGTase:

4-α-Glucanotransferase

IPTG:

Isopropylthio-β-D-galactoside

SDS-PAGE:

Sodium dodecylsulfate-polyacrylamide gel electrophoresis

TLC:

Thin-layer chromatography

HPAEC:

High performance anion exchange chromatography

References

  1. Takaha, T., Smith, S.M.: The functions of 4-α-glucanotransferase and their use for the production of cyclic glucans. Biotechnol. Genet. Eng. Rev. 16, 257–280 (1999)

    CAS  Google Scholar 

  2. Gessler, K., Usόn, I., Takaha, T., Krauss, N., Smith, S.M., Okada, S., Sheldrick, G.M., Saenger, W.: V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acac. Sci. 96, 4246–4251 (1999)

    Article  CAS  Google Scholar 

  3. Kitamura, S., Nakatani, K., Takaha, T., Okada, S.: Complex formation of large-ring cyclodextrins with iodine inaqueous solution as revealed by isothermal titration calorimetry. Macromol. Rapid. Commun. 20, 612–615 (1999)

    Article  CAS  Google Scholar 

  4. Endo, T., Zheng, M., Zimmermann, W.: Enzymatic synthesis and analysis of large-ring cyclodextrins. Aust. J. Chem. 55, 39–48 (2002)

    Article  CAS  Google Scholar 

  5. Tomono, K., Mugishima, A., Suzuki, T., Goto, H., Ueda, H., Nagai, T., Watanabe, J.: Interaction between cycloamylose and various drugs. J. Incl. Phenom. Macro. 44, 267–270 (2002)

    Article  CAS  Google Scholar 

  6. Satake H, Uehori Y, Satou T, Takaba T, Kuriki T, Takada H, Okada S (1998) Coating material for gate roll coater. Japanese Patent, Publication number, 10-219593

  7. Machida, S., Ogawa, S., Xiaohua, S., Takaha, T., Fujii, K., Hayashi, K.: Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 486, 131–135 (2000)

    Article  CAS  Google Scholar 

  8. Monod, J., Torriani, A.M.: Amylomaltase of Escherichia coli. Ann. Inst. Pasteur (Paris). 78(1), 65–77 (1950)

    CAS  Google Scholar 

  9. Goda, S.K., Eissa, O., Akhtar, M., Minton, N.P.: Molecular analysis of a Clostridium butyricum NCIMB 7423 gene encoding 4-alpha-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli. Microbiology 143, 3287–3294 (1997)

    Article  CAS  Google Scholar 

  10. Jeon, B.S., Taguchi, H., Sakai, H., Ohshima, T., Wakagi, T., Matsuzawa, H.: 4-alpha-glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis: enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248, 171–178 (1997)

    Article  CAS  Google Scholar 

  11. Terada, Y., Fujii, K., Takaha, T., Okada, S.: Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose. Appl. Environ. Microbiol. 65, 910–915 (1999)

    CAS  Google Scholar 

  12. Bhuiyan, S.H., Kitaoka, M.: Hayashi, K.: A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B Enzym. 22, 45–53 (2003)

    Article  CAS  Google Scholar 

  13. Bo-young, B., Kim, H., Kim, H., Baik, M., Ahn, S., Kim, C., Park, C.: Cloning and overexpression of 4-α-glucanotransferase from Thermus brockianus (TBGT) in E. coli. J. Microbiol. Biotechnol. 16, 1809–1813 (2006)

    Google Scholar 

  14. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B.J., Gaigalat, L., Goesmann, A., Hartmann, M., Huthmacher, K., Krämer, R., Linke, B., McHardy, A.C., Meyer, F., Möckel, B., Pfefferle, W., Pühler, A., Rey, D.A., Rückert, C., Rupp, O., Sahm, H., Wendisch, V.F., Wiegräbe, I., Tauch, A.: The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104, 5–25 (2003)

    Article  CAS  Google Scholar 

  15. Ikeda, M., Nakagawa, S.: The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62, 99–109 (2003)

    Article  CAS  Google Scholar 

  16. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl KL (1995) Short protocols in molecular biology, 3rd edn, pp. 2–12. Wiley, USA

  17. Park, J., Kim, H., Kim, Y., Cha, H., Kim, Y., Kim, T., Kim, Y., Park, K.: The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydr. Polym. 67, 164–173 (2007)

    Article  CAS  Google Scholar 

  18. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  19. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  20. Takaha, T., Yanase, M., Okada, S., Smith, S.M.: Disproportionating Enzyme (4-α-Glucanotransferase; EC 2.4.1.25) of Potato. Purification, Molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268, 1391–1396 (1993)

    CAS  Google Scholar 

  21. Kakefuda, G., Duke, S.H.: Characterization of pea-chloroplast D-enzyme. Plant Physiol. 91, 136–143 (1989)

    Article  CAS  Google Scholar 

  22. Takaha, T., Yanase, M., Takata, H., Okada, S., Smith, S.M.: Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 271(6), 2902–2908 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

WS was financially supported by the Royal Golden Jubilee PhD Fellowship from the Thailand Research Fund. Financial support from the Ratchadapiseksomphot Endowment Fund of Chulalongkorn University to the Starch and Cyclodextrin Research Unit and from Research Institution Partnership Grant of Alexander von Humboldt Foundation are acknowledged. The authors also acknowledge the support from the Thai Government Stimulus Package 2 (TKK 2555) under the Project PERFECTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piamsook Pongsawasdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srisimarat, W., Powviriyakul, A., Kaulpiboon, J. et al. A novel amylomaltase from Corynebacterium glutamicum and analysis of the large-ring cyclodextrin products. J Incl Phenom Macrocycl Chem 70, 369–375 (2011). https://doi.org/10.1007/s10847-010-9890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9890-5

Keywords

Navigation