Skip to main content
Log in

Enhanced degradation of 3-nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Nitroaromatic compounds are major chemical pollutants because of their widespread use and toxicity. Bioremediation of such toxic nitroaromatic compounds using microorganisms may provide an effective method for detoxification. Bacillus flexus strain XJU-4, capable of degrading 3-nitrobenzoate, was immobilized in various matrices, namely polyurethane foam (PUF), polyacrylamide, sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA) and agar. The degradation of 12 and 24 mM 3-nitrobenzoate, by both freely suspended cells and immobilized cells, in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation rates of 12 and 24 mM — nitrobenzoate than freely suspended cells, and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused for more than 21 cycles without losing any degradation capacity. These results revealed the feasibility of using PUF-immobilized cells of B. flexus for the enhanced degradation of — nitrobenzoate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulkarni, M. and A. Chaudhari (2007) Microbial remediation of nitro-aromatic compounds: An overview. J. Env. Management 85: 496–512.

    Article  CAS  Google Scholar 

  2. Ghosh, A., M. Khurana, A. Chauhan, M. Takeo, A. K. Chakraborti, and R. K. Jain (2010) Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol and 2,4-dinitrophenol by Rodococcus imtechensis Strain RK300. Env. Sci. Technol. 44: 1069–1077.

    Article  CAS  Google Scholar 

  3. Rieger, P. G., H. M. Meler, M. Gerle, U. Vogt, T. Groth, and H. J. Knackmuss (2002) Xenobiotics in the environment: Present and future stratergies to obviate the problem of biological persistence. J. Biotechnol. 94: 101–123.

    Article  CAS  Google Scholar 

  4. Higson, F. K. (1992) Microbial degradation of nitroaromatic compounds. Adv. Appl. Microbiol. 37: 1–19.

    Article  CAS  Google Scholar 

  5. Nipper, M., R. S. Carr, J. M. Biedenbach, R. L. Hooten, K. Miller, and S. Saepoff (2001) Development of marine toxicity data for ordnance compounds. Arch. Environ. Contam. Toxicol. 41: 308–318.

    Article  CAS  Google Scholar 

  6. Tokiwa, H. and Y. Ohnishi (1986) Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC. Crit. Rev. Toxicol. 17: 23–60.

    Article  CAS  Google Scholar 

  7. Nishino, S. F., J. C. Spain, and Z. He (2000) Strategies for aerobic degradation of nitroaromatic compounds by bacteria: Process discovery to field application. pp. 7–61. In: J. C. Spain, J. B. Hughes, and H. -J. Knackmuss (eds.). Biodegradation of Nitroaromatic Compounds and Explosives. Lewis Publishers Boca Raton.

  8. Pandey, G., D. Paul, and R. K. Jain (2003) Branching of onitrobenzoate degradation pathway in Arthrobacter protophormiae RJK 100: Identification of new intermediates. FEMS. Microbiol. Lett. 229: 231–236.

    Article  CAS  Google Scholar 

  9. Ye, J., A. Sing, and O. Ward (2004) Biodegradation of nitroaromatic compounds and other nitrogen-containing xenobiotics. World J. Microbiol. Biotechnol. 20: 117–135.

    Article  CAS  Google Scholar 

  10. Jiyeon, H., R. C. Engler, and J. R. Wild (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour. Technol. 100: 1138–1142.

    Article  Google Scholar 

  11. Trevors, J. T., H. Lee, A. C. Wolters, and J. D. VanElsas (1993) Survival of alginate encapsulated Pseudomonas fluorescens cells in soil. Appl. Microbiol. Biotechnol. 39: 637–643.

    Article  Google Scholar 

  12. Zheng, C., J. Zhou, J. Wang, B. Qu, J. Wang, H. Lu, and H. Zhao (2009) Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam. J. Haz. Mat. 168: 298–303.

    Article  CAS  Google Scholar 

  13. Chung, T. P., H. Y. Tseng, and R. S. Juang (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Proc. Biochem. 38: 1497–1507.

    Article  CAS  Google Scholar 

  14. Tallur, P. N., V. B. Megadi, and H. Z. Ninnekar (2009) Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1. Biodegradation 20: 79–83.

    Article  CAS  Google Scholar 

  15. Cheethman, P. S. J. (1980) Immobilized enzymes. pp. 189–238. In: P. S. J. Cheetam (eds.). Topics in enzyme and fermentation technology. Hills Harwood, Chichester.

    Google Scholar 

  16. Kotouckova, L., J. Vavrik, M. Nemec, J. Plocek, and Z. Zdrahal (1997) Use of immobilized cells of the strain Corynebacterium sp. for 4-nitrophenol degradation. Folia. Microbiol. 42: 509–512.

    Article  CAS  Google Scholar 

  17. Kitova, A. E., T. N. Kuvichkina, A. Y. Arinbasarova, and A. N. Reshetilov (2004) Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Appl. Biochem. Microbiol. 40: 258–261.

    Article  CAS  Google Scholar 

  18. Peres, C. M., H. B. VanAken, H. Naveau, and S. N. Agathos (1999) Continuous degradation of mixtures of 4-nitrobenzoate and 4-aminobenzoate by immobilized cells of Burkholderia cepacia strain PB4. Appl. Microbiol. Biotechnol. 52: 440–445.

    Article  CAS  Google Scholar 

  19. Goodall, J. L., S. M. Thomas, J. C. Spain, and S. W. Peretti (1998) Operation of mixed-culture immobilized cell reactors for the metabolism of meta- and para-nitrobenzoate by Comamonas sp. JS46 and Comamonas sp. JS47. Biotechnol. Bioeng. 59: 21–27.

    Article  CAS  Google Scholar 

  20. Zhang, K., Y. Xu, X. Hua, H. Han, J. Wang, J. Wang, Y. Liu, and Z. Liu (2008) An intensified degradation of phenanthrene with macroporous alginate-lignin beads immobilized Phanerochaete chrysosporium. Biochem. Eng. J. 41: 251–257.

    Article  CAS  Google Scholar 

  21. Mulla, S. I., R. S. Hoskeri, Y. S. Shouche, and H. Z. Ninnekar (2011) Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation 22: 95–102.

    Article  CAS  Google Scholar 

  22. Mulla, S. I., T. P. Manjunatha, R. S. Hoskeri, P. N. Tallur, and H. Z. Ninnekar (2011) Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4. World J. Microbiol. Biotechnol. 27: 1587–1592.

    Article  CAS  Google Scholar 

  23. Hall, D. O. and K. K. Rao (1989) Immobilized photosynthetic membranes and cells for the production of fuels and chemicals. Chim. Oggi. 1: 41–47.

    Google Scholar 

  24. Bettmann, H. and H. J. Rehm (1984) Degradation of phenol by polymer entrapped microorganisms. Appl. Microbiol. Biotechnol. 20: 285–290.

    Article  CAS  Google Scholar 

  25. Wang, B. -E. and Y. -Y. Hu (2007) Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigates beads. J. Env. Sci. 19: 451–457.

    Article  CAS  Google Scholar 

  26. Jonathan, M. (1988) Methods of immobilization of microbial cells. J. Microbiol. Methods. 8: 91–102.

    Article  Google Scholar 

  27. Cassidy, M. B., H. Lee, and J. T. Trevors (1996) Environmental applications of immobilized microbial cells: A review. J. Ind. Microbiol. 16: 79–101.

    Article  CAS  Google Scholar 

  28. Yun, Q., Z. Lin, and T. Xin (2009) Cometabolism and immobilized degradation of monochlorobenzoate by Rhodococcus erythropolis. Afr. J. Microbiol. Res. 3: 482–486.

    CAS  Google Scholar 

  29. Trevors, J. T., J. P. VanElsa, H. Lee, and L. S. VanOverbeek (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb. Rel. 1: 61–69.

    Google Scholar 

  30. Quek, E., Y. -P. Ting, and H. M. Tan (2006) Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresour. Technol. 97: 32–38.

    Article  CAS  Google Scholar 

  31. Romaskevic, T., S. Budriene, K. Pielichowski, and J. Pielichowski (2006) Application of polyurethane-based materials for immobilization of enzymes and cells: A review. CHEMIJA. 17: 74–89.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harichandra Z. Ninnekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulla, S.I., Talwar, M.P., Hoskeri, R.S. et al. Enhanced degradation of 3-nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4. Biotechnol Bioproc E 17, 1294–1299 (2012). https://doi.org/10.1007/s12257-012-0211-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0211-2

Keywords

Navigation