Skip to main content
Log in

Soybean protein: A natural source for the production of green silver nanoparticles

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The ethnopharmacological approach to the production of nanoparticles is directly related to the creation of an important symbiosis between nanoscience and medical science. Production of nanoparticles under ecofriendly conditions is of significance to address growing concerns on the overall toxicity of nanoparticles for medical and biotechnological applications. The present investigation demonstrates silver nanoparticles production capabilities of a miracle bean soybean Glycine max. We found that a single protein of soybean with a molecular weight of 51 kDa stabilizes the newly formed silver nanoparticles. The electroeluted protein has confirmed the bioreduction property of silver ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiley, B. J., S. H. Im, J. McLellan, A. Siekkinen, and Y. Xia (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110: 15666–15675.

    Article  CAS  Google Scholar 

  2. Ramirez, I. M., S. Bashir, Z. Luo, and J. L. Liu (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces B: Biointerf. 73: 185–191.

    Article  Google Scholar 

  3. Govindraju, K., V. Kiruthiga, V. Ganesh Kumar, and G. Singaravelu (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii grevilli and their antibacterial effects. J. Nanosci. Nanotechnol. 9: 5497–5501.

    Article  Google Scholar 

  4. Sondi, I. and B. Salopek-Sondi (2004) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gramnegative bacteria. J. Colloids Interface Sci. 275: 177–182.

    Article  CAS  Google Scholar 

  5. Panacek, A., M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, and L. Kvitek (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333–6340.

    Article  CAS  Google Scholar 

  6. Elechiguerra, J. L., J. Burt, J. R Morones, A. Camacho Bragado, X. Gao, H. H. Lara, and M. J. Yacaman (2005) Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 6–15.

    Article  Google Scholar 

  7. Nadworny, P. L., J. Wang, E. E. Tredget, and R. E. Burrell (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine: Nanotech. Biol. Med. 4: 241–251.

    Article  CAS  Google Scholar 

  8. Rogers, J. V., C. V. Parkinson, Y. W. Choi, J. L. Speshock, and S. M. Hussain (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 3: 129–133.

    Article  Google Scholar 

  9. Gurunathan, S., K. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, and S. H. Eom (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30: 6341–6350.

    Article  CAS  Google Scholar 

  10. Philip, D. (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectroch. Acta Part A. 77: 807–810.

    Article  Google Scholar 

  11. Ahmad, A., S. Senapati, M. I. Khan, R. Kumar, and M. Sastry (2003) Extra-cellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19: 3550–3553.

    Article  CAS  Google Scholar 

  12. Agnihotri, M., S. Joshi, A. R. Kumar, S. Zinjarde, and S. Kulkarni (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 63: 1231–1234.

    Article  CAS  Google Scholar 

  13. Ingle, A., M. Rai, A. Gade, and M. Bawaskar (2008) Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanoparticle Res. 11: 2079–2085.

    Article  Google Scholar 

  14. Kathiresan, K., S. Manivannan, M. A. Nabeel, and B. Divya (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerf. 71: 133–137.

    Article  CAS  Google Scholar 

  15. Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerf. 28: 313–318.

    Article  CAS  Google Scholar 

  16. Nair, B. and T. Pradeep (2002) Coalescence of nanoclusters and the formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293–298.

    Article  CAS  Google Scholar 

  17. Kalimuthu, K., R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerf. 65: 150–153.

    Article  CAS  Google Scholar 

  18. Nanda, A. and M. Saravanan (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE Nanomedicine: Nanotechnol. Biol. Med. 5: 452–456.

    CAS  Google Scholar 

  19. Singaravelu, G., J. Arockiyamari, V. Ganesh Kumar, and K. Govindaraju (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville Colloids and Surfaces B: Biointerf. 57: 97–101.

    Article  CAS  Google Scholar 

  20. Govindraju, K., S. Khaleel Basha, V. Ganesh Kumar, and G. Singaravelu (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J. Mater. Sci. 43: 5115–5123.

    Article  Google Scholar 

  21. Shankar, S. S., A. Rai, A. Ahmad, and M. Sastry (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496–502.

    Article  CAS  Google Scholar 

  22. Li, S., Y. Shen, A. Xie, X. Yu, L. Qui, L. Zhang, and Q. Zhang (2007) Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chem. 9: 852–858.

    Article  CAS  Google Scholar 

  23. Abu Bakar, N. H. H., J. Ismail, and M. Abu Bakar (2007) Synthesis and characterization of silver nanoparticles in natural rubber Mat. Chem. Phys. 104: 276–283.

    CAS  Google Scholar 

  24. Mude, N., A. Ingle, A. Gade, and M. Rai (2009) Synthesis of Silver Nanoparticles by the callus extract of Carica papaya: A first report. Plant Biochem. Biotechnol. 18: 83–86.

    Article  CAS  Google Scholar 

  25. Bar, H., D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009) Green Synthes of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Phys. Eng. Asp. 339: 134–139.

    Article  CAS  Google Scholar 

  26. Raut Rajesh, W., R. Lakkakula Jaya, S. Kolekar Niranjan, D. Mendhulkar Vijay, and B. Kashid Sahebrao (2009) Phytosynthesis of Silver Nanoparticle Using Gliricidia sepium (Jacq.) Curr. Nanosci. 5: 117–122.

  27. Raghunandan, D., B. D. Mahesh, S. Basavaraja, S. D. Balaji, S. Y. Manjunath, and A. Venkataraman (2011) Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J. Nanoparticle Res. 13: 2021–2028.

    Article  CAS  Google Scholar 

  28. Singhal, G., R. Bhavesh, K. Kasariya, A. Ranjan Sharma, and R. Pal Singh (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticle Res. 13: 2981–2988.

    Article  CAS  Google Scholar 

  29. Sathyavathi, R., M. Balamurali Krishna, S. Venugopal Rao, R. Saritha, and D. Narayana Rao (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 3: 138–143.

    Google Scholar 

  30. Philip, D. (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimen. Sys. Nanostruc. 42: 1417–1424.

    Article  CAS  Google Scholar 

  31. Bankar, A., B. Joshi, A. R. Kumar, and S. Zinjarde (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Phys. Eng. Asp. 368: 58–63.

    Article  CAS  Google Scholar 

  32. Kora, A. J., R. B. Sashidhar, and J. Arunachalam (2010) Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Poly. 82: 670–679.

    Article  CAS  Google Scholar 

  33. Patel, R. P., B. J. Boersma, J. H. Crawford, N. Hogg, M. Kirk, and B. Kalyanaraman, D. A. Parks, S. Barnes, and D. Usmar (2001) Antioxidant mechanisms of isoflavones in lipid systems: Paradoxical effects of peroxyl radical scavenging. Free Radic. Biol. Med. 31: 1570–1581.

    Article  CAS  Google Scholar 

  34. Rufer, C. E. and S. E. Kulling (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agricul. Food Chem. 54: 2926–2931.

    Article  Google Scholar 

  35. Steinberg, F. M., N. L. Guthrie, A. C. Villablanca, K. Kumar, and M. J. Murray (2003) Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women. Am. J. Clin. Nut. 78: 123–130.

    CAS  Google Scholar 

  36. Choi, J. M., H. J. Ryu, J. H. Chung, J. C. Park, J. K. Hwang, D. B. Shin, S. K. Lee, and R. Ryang (2005) Antioxidant property of genistein: Inhibitory effect on HOCl induced protein degradation, DNA cleavage, and cell death. Food Sci. Biotechnol. 14: 399–404.

    CAS  Google Scholar 

  37. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  38. Sathish, S., C. Selvakkumar, A. S. Sahul Hameed, and R. B. Narayanan (2004) 18-kDa protein as a marker to detect WSSV infection in shrimps. Aquaculture 238: 39–50.

    Article  CAS  Google Scholar 

  39. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  40. Khaleel Basha, S., K. Govindaraju, R. Manikandan, J. Ahn, E. Y. Bae, and G. Singaravelu (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids and Surf. B: Biointerf. 75: 405–409.

    Article  CAS  Google Scholar 

  41. Vignehwaran, N., A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya (2007) A simple route for the synthesis of silverprotein (core-shell) Nanoparticles using spent mushroom substrate (SMS). Lamgmuir 23: 7113–7117.

    Article  Google Scholar 

  42. Shankar, S. S., A. Ahmad, and M. Sastry (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotecnol. Prog. 19: 1627–1631.

    Article  CAS  Google Scholar 

  43. Huang, J., Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 18: 105104–105114.

    Article  Google Scholar 

  44. Devillers, J., M. Moriot, M. H. P-Delegue, and J. C. Dore (2004) Classification of monofloral honeys based on their quality control data. Food Chem. 86: 305–312.

    Article  CAS  Google Scholar 

  45. Magudapathy, P., P. Gangopadhyay, B. K. Panigrahi, K. G. M. Nair, and S. Dhara (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B 299: 142–146.

    Article  CAS  Google Scholar 

  46. Conner, E. E., J. Mwamuks, A. Gole, C. J. Murphy, and M. D. Wyatt (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1: 325–327.

    Article  Google Scholar 

  47. Alanazi, F. K., A. A. Radwan, and I. A. Alsarra (2010) Biopharmaceutical applications of nanogold. Saudi Pharm J. 18: 179–193.

    Article  CAS  Google Scholar 

  48. Pal, A., S. Shah, and S. Devi (2007) Preparation of silver, gold and silver-gold bimetallic nanoparticles in w/o microemulsion containing Triton X-100. Colloids Surf. A: Physicochem. Eng. Aspects 302: 483–487.

    Article  CAS  Google Scholar 

  49. Han, M., X. Gao, J. Z. Su, and S. Nie (2001) Quantum-dottagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19: 631–635.

    Article  CAS  Google Scholar 

  50. Duran, N., P. D. Marcato, S. De, I. H. Gabrie, O. L. Alves, and E. Esposito (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203–208.

    Article  CAS  Google Scholar 

  51. Bhumkar, D. R., H. M. Joshi, M. Sastry, and V. B. Pokharkar (2007) Chitosan reduced gold nanoparticles as novel carriers for tranmucosal delivery of insulin. Pharm. Res. 24:1415–1426.

    Article  CAS  Google Scholar 

  52. Pulliam, B., J. C. Sung, and D. A. Edwards (2007) Design of nanoparticle-based dry powder pulmonary vaccines. Exp. Opin Drug Deliv. 4: 651–663.

    Article  CAS  Google Scholar 

  53. Noh, S. M., W. K. Kim, S. J. Kim, J. M. Kim, K. H. Baek, and Y. K. Oh (2007) Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochim. Biophys. Acta 1770: 747–752.

    Article  CAS  Google Scholar 

  54. Praetorius, N. P. and T. K. Mandal (2007) Engineered nanoparticles in cancer therapy. Recent Patents on Drug Deliv. Form. 1: 37–51.

    Article  CAS  Google Scholar 

  55. Parashar, V., R. Parashar, B. Sharma, and A. Pandey (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization. Digest J. Nanomater. Biostruc. 4: 45–50.

    Google Scholar 

  56. Ankamwar, B., C. Damle, A. Ahmad, and M. Sastry (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 5: 1665–1671.

    Article  CAS  Google Scholar 

  57. Gardea-Torresdey, J. L., E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman (2003) Alfalfa sprout: A natural source for the synthesis of silver nanoparticles Langmuir 19: 1357–1361.

    Article  CAS  Google Scholar 

  58. Haverkamp, R. G., A. T. Marshall, and D. Van Agterveld (2007) Pick your Carats: Nanoparticles of gold-silver-copper alloy produced in vivo. J. Nanoparticle Res. 9: 697–700.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Singaravelu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasikala, D., Govindaraju, K., Tamilselvan, S. et al. Soybean protein: A natural source for the production of green silver nanoparticles. Biotechnol Bioproc E 17, 1176–1181 (2012). https://doi.org/10.1007/s12257-012-0021-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0021-6

Keywords

Navigation