Skip to main content
Log in

Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) The use of microorganisms for the formation of metal nanoparticles and their application. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925

    Article  CAS  Google Scholar 

  • Aurel Y, Jan G, Paul VL, Thijs W, Stephan WFM, Van H, Tom AM, Beumer TA, Robert R, Wijn RR, Rene G, Heideman RG, Vinod S, Johannes S, Kanger JS (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7(2):394–397

    Article  Google Scholar 

  • Basavaraja S, Balaji DS, Arunkumar L, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Begum S, Hassan SI, Siddiqui BS, Shaheen F, Ghayur MN, Gilani AH (2002) Triterpenoids from the leaf of Psidium guajava. Phytochemistry 61:399–403

    Article  CAS  Google Scholar 

  • Chan WCS, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  • Chen KC, Hsieh CL, Peng CC, Hsieh-Li HM, Chiang HS, Huang KD, Peng RY (2007) Brain derived metastatic prostate cancer DU-145 cells are effectively inhibited in vitro by guava (Psidium gujava L.) leaf extracts. Nutr Cancer 58(1):93–106

    CAS  Google Scholar 

  • Chen-Wen L, Yann H, Jong-Kai H, Ming Y, Tsai-Hua C, Yu-Shen L, Si-Han W, Szu-Chun H, Hon-Man L, Chung-Yuan M, Chung-Shi Y, Dong-Ming H, Yao-Chang C (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154

    Article  Google Scholar 

  • Cristian S, Alan T, Johnson J, Gelperin A (2005) DNA-decorated carbon nanotubes for chemical sensing. Nano Lett 5(9):1774–1778

    Article  Google Scholar 

  • Deitch EA, Marrino AA, Lakanok V, Al-bright JA (1987) Silver nylon cloth: in vitro and in vivo evaluation of antimicrobial activity. J Trauma 27(3):301–304

    Article  CAS  Google Scholar 

  • El-Sayed IH, Huang XH, El-Sayed MA MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834

    Article  CAS  Google Scholar 

  • Fendler JH (1996) Self-assembled nanostructured materials. Chem Mater 8:1616–1624

    Article  CAS  Google Scholar 

  • Gabriel C, Gabriel S, Grant EH, Halstead BSJ (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–223

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa R, Parsons JG, Troiani H, Yacaman MJ MJ (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Gedye RN, Smith FE, Westaway KC (1991) Microwaves in organic and organometallic synthesis. J Microw Power Electromag Energy 26:3–17

    Google Scholar 

  • Huang H, Yang X (2004) Suspension of silver oxide nanoparticles in chitosan solution and its antibacterial activity in cotton fabrics. Carbohydr Res 339:2627–2631

    Article  CAS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  CAS  Google Scholar 

  • Krasovskii VI, Karavanskii VA (2008) Surface plasmon resonance of metal nanoparticles for interface characterization. Opt Mem Neural Netw 17(1):8–14

    Google Scholar 

  • Liang Q, Qian H, Yao W (2005) Identification of flavonoids and their glycosides by high-performance liquid chromatography with electrospray ionization mass spectrometry and with diode array ultraviolet detection. Eur J Mass Spectrom 11:93–101

    Article  CAS  Google Scholar 

  • Miean KH, Suhaila M (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112

    Article  CAS  Google Scholar 

  • Mingos DMP, Whittaker AG (1997) Microwave dielectric heating effects. In: Eldik RV, Hubbard CD (eds) Chemical synthesis in chemistry under extreme or non-classical conditions. Wiley, New York, pp 479–514

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Rongchao J (2005) Noble metal nanocrystals: synthesis, optical properties, and biological applications. http://old.iupac.org/news/prize/2005/Jin.pdf

  • Sastry M, Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B 28:313–318

    Article  Google Scholar 

  • Sastry M, Shankar SS, Akhilesh R, Absar A (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  Google Scholar 

  • Scott DB, Timothy JB, Thomas JH (2003) Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 3(7):901–905

    Article  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  CAS  Google Scholar 

  • Shikuo L, Yuhua S, Anjian X, Xuerong Y, Lingguang Q, Li Z, Qingfeng Z (2007) Green synthesis of silver nanoparticles using Capsicum annuum. L. extract. Green Chem 9:852–858

    Article  Google Scholar 

  • Stephan L, Mostafa A, El-Sayed J (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Phys Chem B 103:4212–4217

    Article  Google Scholar 

  • Suntornsuk L, Gritsanapun W, Nilkamhank S, Paochom A (2002) Quantitation of vitamin C content in herbal juice using direct titration. J Pharm Biomed Anal 28(5):849–855

    Article  CAS  Google Scholar 

  • Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mat 6:312–318

    Article  CAS  Google Scholar 

  • Wilson CW, Shaw PE, Campbell CW (2006) Determination of organic acids and sugars in guava (Psidium guajava L.) cultivars by high-performance liquid chromatography. J Sci Food Agric 33:777–780

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from Department of science and technology (DST, Grant No. SR/S1/PC-10/2005), University grant commission (UGC, D.O.No. F.14-4/2001 (Innov. Policy/ASIST)) and Board of nuclear sciences, Department of atomic energy (BRNS, DAE no. 2009/34/BRNS) are acknowledged. We thank Prof. G. U. Kulkarni for fruitful guidance and Selvi Rajan, JNCASR Bangalore for FESEM measurements. Raghunandan Deshpande thank his father Shri. J. M. Deshpande for editing & Dr. Appala Raju, Principal of HKES College of pharmacy, Gulbarga for encouraging the research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkataraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghunandan, D., Mahesh, B.D., Basavaraja, S. et al. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J Nanopart Res 13, 2021–2028 (2011). https://doi.org/10.1007/s11051-010-9956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9956-8

Keywords

Navigation