Skip to main content
Log in

Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic compounds derived from natural sources and anthropogenic processes, which have been recommended as priority pollutants. Degradation of PAHs in the environment is becoming more necessary and urgent. In the current study, strain PL2, which is capable of growing aerobically on pyrene (PYR) as the sole carbon source, was isolated from hydrocarbons-contaminated soil and then identified as Pseudomonas putida by morphological and physiological characteristics as well as 16S rDNA sequence. The strain PL2 was able to degrade 50.0% of the pyrene at 28°C within 6 days in the presence of 50 mg/L pyrene, while the strain PL2 degraded 50.0% of the pyrene within 2 days when a solution of 50 mg/L pyrene and 50 mg/L phenanthrene was used. In addition, phenanthrene was shown to increase the biodegradation efficiency of pyrene by the strain PL2. The order of degradation by the strain PL2 was pH 6.0 > pH 7.0 > pH 5.0 > pH 8.0. The degradation rate of PYR in the soil by the strain PL2 reached 70.0% at the 10th day. The dynamics of PYR degradation in soil by PL2 was fit to the first order model and the strain PL2 was shown to efficiently degrade PYR in soil. The current study showed that P. putida PL2 was a novel bacterium that could degrade pyrene and holds great promise for use in PAHs bioremediation in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fetzer, J. C. (2007) The chemistry and analysis of large PAHs. Polycycl Aromat. Comp. 27: 143–162.

    Article  CAS  Google Scholar 

  2. Wilson, S. C. and K. C. Jones (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons: A review. Environ. Pollut. 81: 229–249.

    Article  CAS  Google Scholar 

  3. Carmichael, L. M., R. F. Christman, and F. K. Pfaender (1996) Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soil. Environ. Sci. Technol. 31: 126–132.

    Article  Google Scholar 

  4. Blumer, M. (1961) Benzopyrenes in soils. Sci. 134: 474–475.

    Article  CAS  Google Scholar 

  5. Maliszewska-Kordybach, B. (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 11: 121–127.

    Article  Google Scholar 

  6. Wang, X. L., S. Tao, R. W. Dawson, and X. J. Wang (2004) Uncertainty analysis of parameters for modeling the transfer and fate of benzo (a) pyrene in Tianjin wastewater irrigated areas. Chemosphere 55: 525–531.

    Article  CAS  Google Scholar 

  7. Chung, M. K., R. Hu, K. C. Cheung, and M. H. Wang (2007) Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere 67: 464–473.

    Article  CAS  Google Scholar 

  8. Motelay-Massei, A., D. Ollivon, B. Garban, M. J. Teil, M. Blanchard, and M. Chevreuil (2004) Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere 55: 555–565.

    Article  CAS  Google Scholar 

  9. Kastner, M. and B. Mahro (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soil affected by the organic matrix of compost. Appl. Microbiol. Biot. 44: 668–675.

    Article  CAS  Google Scholar 

  10. Mahmood, S. K. and P. R. Rao (1993) Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil. B. Environ. Contam. Tox. 50: 486–491.

    Article  CAS  Google Scholar 

  11. Li, X. J., X. Lin, P. J. Li, W. Liu, L. Wang, F. Ma, and K. S. Chukwukae (2009) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J. Hazard. Mater. 172: 601–605.

    Article  CAS  Google Scholar 

  12. Yuan, S. Y., S. H. Wei, and B. V. Chang (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463–1468.

    Article  CAS  Google Scholar 

  13. Gibson, D. T., V. Mahadevan, R. M. Jerina, H. Yogi, and H. J. Yeh (1975) Oxidation of the carcinogens benzo[a] pyrene and dibenz[a,h] anthracene to dihydrodiols by a bacterium. Sci. 189: 295–297.

    Article  CAS  Google Scholar 

  14. Johnson, A. R., L. Y. Wick, and H. Harms (2005) Principles of microbial PAH-degradation in soil. Environ. Pollut. 133: 71–84.

    Article  Google Scholar 

  15. Tiwari, J. N., M. M. K. Reddy, D. K. Patel, S. K. Jain, R. C. Murthy, and N. Manickam (2010) Isolation of pyrene degrading Achromobacter xylooxidans and characterization of metabolic product. World J. Microb. Biot. 26: 1727–1733.

    Article  CAS  Google Scholar 

  16. Wang, D. G., M. Yang, H. L. Jia, L. Zhou, and Y. F. Li (2009) Polycyclic aromatic hydrocarbons in urban street dust and surface soil: Comparisons of concentration, profile, and source. Arch. Environ. Con. Tox. 56:173–180.

    Article  CAS  Google Scholar 

  17. Chen, L. G., Y. Ran, B. S. Xing, and B. X. Mai (2005) Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere 60: 879–890.

    Article  CAS  Google Scholar 

  18. Wang, C. G., F. Wang, T. Wang, Y. G. Bian, X. L. Yang, and X. Jiang (2010) PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquidphase bioreactor (TLPB). J. Hazard. Mater. 176: 41–47.

    Article  CAS  Google Scholar 

  19. Rehmann, K., H. P. Noll, C. E. Steinberg, and A. A. Kettrup (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36: 2977–2992.

    Article  CAS  Google Scholar 

  20. John, G. H. and N. R. Krieg (1994) Bergey’s manual of determinative bacteriology. (9th eds.). Baltimore-Philadelphia-Hongkong-London-Munich-Sydney-Tokyo, Williams & Wilkins.

    Google Scholar 

  21. Frederich, M. A., B. Roger, E. K. Robert, D. M. David, J. G. Seidman, A. S. John, and S. Kevin (1999) Short protocols in molecular biology. pp. 2–12. John Wiley & Sons.

  22. Cui, F. J., Z. Q. Liu, L. Yin, L. F. Ping, L. Y. Ping, Z. C. Zhang, L. Lin, Y. Dong, and D. Huang (2010) Production of mycelial biomass and exo-polymer by Hericiumerinaceus CZ-2: Optimization of Nutrients levels using response surface methodology. Biotechnol. Bioproc. E. 15: 299–307.

    Article  CAS  Google Scholar 

  23. Liu, Z. Q., L. Z. Jia, and Y. G. Zheng (2010) Biotransformation of D L-lactate to pyruvate by a newly isolated Serratia marcescens ZJB-07166. Proc. Biochem. 45: 1632–1637.

    Article  CAS  Google Scholar 

  24. Chung, C. T., S. L. Niemela, and R. H. Miller (1989) One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA. 86: 2172–2175.

    Article  CAS  Google Scholar 

  25. Ping, L. F., Y. M. Luo, L. H. Wu, W. Qian, J. Song, and P. Christie (2006) Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions. Environ. Geochem. Hlth. 28: 189–195.

    Article  CAS  Google Scholar 

  26. Ping, L. F., Y. M. Luo, C. B. Zhang, Q. B. Li, and L. H. Wu (2007) Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ. Pollut. 147: 358–365.

    Article  CAS  Google Scholar 

  27. Boldrin, B., A. Tiehm, and C. Fritzche (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 59: 1927–1930.

    CAS  Google Scholar 

  28. Tao, X. Q., G. N. Lu, Z. Dang, Y. Chen, and Y. Y. Xiao (2007) A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Proc. Biochem. 42: 401–408.

    Article  CAS  Google Scholar 

  29. Ma, J., H. P. Gao, L. Y. Jia, L. Xu, and J. Xie (2008) Isolation and characterization of PAHs degrading bacteria from activated sludge. J. Biotechnol. 136: S697–S698.

    Article  Google Scholar 

  30. Sheng, X. F., X. B. Chen, and L. Y. He (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int. Biodeter. Biodegr. 62: 88–95.

    Article  CAS  Google Scholar 

  31. Zhang, G. Y., J. Y. Ling, H. B. Sun, J. Luo, Y. Y. Fan, and Z. J. Cui (2009) Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11. J. Hazard. Mater. 172: 580–586.

    Article  CAS  Google Scholar 

  32. Klankeo, P., W. Nopcharoenkul, and O. Pinyakong (2009) Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J. Biosci. Bioeng. 108: 488–495.

    Article  CAS  Google Scholar 

  33. Guo, C. L., Z. Dang, Y. S. Wong, and N. F. Tam (2010) Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. Int. Biodeter. Biodegr. 64: 419–426.

    Article  CAS  Google Scholar 

  34. Mihelcic, J. R. and R. G. Luthy (1993) Bioavailability of sorbed- and separate-phase chemicals. Biodegradation. 4: 141–153.

    Article  CAS  Google Scholar 

  35. Woo, S. H., M. W. Lee, and J. M. Park (2004) Biodegradation of phenanthrene in soil-slurry systems with different mass transfer regime and soil content. J. Biotechnol. 110: 235–250.

    Article  CAS  Google Scholar 

  36. Su, D., P. J. Li, X. Wang, and H. X. Xu (2007) Degradation and kinetics of pyrene and benzo[a] pyrene by three bacteria in contaminated soil. Environ. Sci. 28: 913–917.

    CAS  Google Scholar 

  37. Jimenez, I. and R. Bartha (1996) Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Appl. Environ. Microb. 62: 2311–2316.

    CAS  Google Scholar 

  38. Kastner, M., M. Breuer-Jammali, and B. Mahro (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl. Environ. Microb. 64: 359–362.

    CAS  Google Scholar 

  39. Cerniglia, C. E. (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 3: 351–368.

    Article  CAS  Google Scholar 

  40. Haritash, A. K. and C. P. Kaushik (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169: 1–15.

    Article  CAS  Google Scholar 

  41. Zeng, J., X. G. Lin, J. Zhang, and X. G. Li (2010) Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium sp. and the degradation in soil. J. Hazard. Mater. 183: 718–723.

    Article  CAS  Google Scholar 

  42. El-Mansi, E. M. T., C. F. A. Bryce, A. L. Demain, and A. R. Allman (2007) Fermentation microbiology and biotechnology (2nd ed). CRC press.

  43. Su, D., P. J. Li, and J. L. Ju (2006) Degradation of pyrene and benzo[a]pyrene in soil by six strains of fungi and its kinetics. China Environ. Sci. 26: 188–191.

    CAS  Google Scholar 

  44. Anastasi, A., T. Coppola, V. Prigione, and G. C. Varese (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: Role of laccases and peroxidases. J. Hazard. Mater. 165: 1229–1233.

    Article  CAS  Google Scholar 

  45. Romero, M. C., M. L. Salvioli, M. C. Cazau, and A. M. Arambarri (2002) Pyrene degradation by yeasts and filamentous fungi. Environ. Pollut. 117: 159–163.

    Article  CAS  Google Scholar 

  46. Ramirez, N., T. Cutright, and L. K. Ju (2001) Pyrene biodegradatin in aqueous solutions and soil slurries by Mycobacterium PYR-1 and enriched consortium. Chemosphere 44: 1079–1086.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Li or Hua Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, L., Zhang, C., Zhu, Y. et al. Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2. Biotechnol Bioproc E 16, 1000–1008 (2011). https://doi.org/10.1007/s12257-010-0435-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0435-y

Keywords

Navigation