Skip to main content
Log in

Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The sequential optimization strategy for design of an experimental and artificial neural network (ANN) linked genetic algorithm (GA) were applied to evaluate and optimize media component for L-asparaginase production by Aspergillus terreus MTCC 1782 in submerged fermentation. The significant media components identified by Plackett-Burman design (PBD) were fitted into a second order polynomial model (R2 = 0.910) and optimized for maximum L-asparaginase production using a five-level central composite design (CCD). A nonlinear model describing the effect of variables on L-asparaginase production was developed (R2 = 0.995) and optimized by a back propagation NN linked GA. Ground nut oil cake (GNOC) flour 3.99% (w/v), sodium nitrate (NaNO3) 1.04%, L-asparagine 1.84%, and sucrose 0.64% were found to be the optimum concentration with a maximum predicted L-asparaginase activity of 36.64 IU/mL using a back propagation NN linked GA. The experimental activity of 36.97 IU/mL obtained using the optimum concentration of media components is close to the predicted L-asparaginase activity of the ANN linked GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broome, J. D. (1963) Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilympholna substance. J. Exp. Med. 118: 99–120.

    Article  CAS  Google Scholar 

  2. Mashburn, L. and J. C. Jr. Wriston (1964) Tumor inhibitory effect of L-asparaginase from Escherichia coli. Arch. Biochem. Biophys. 105: 450–452.

    Article  CAS  Google Scholar 

  3. Wriston, J. C. Jr. and T. O. Yellin (1973) L-asparaginase — A Review. Adv. Enz. 39: 185–248.

    CAS  Google Scholar 

  4. Peterson, R. E. and A. Ciegler (1969) L-asparaginase production by Erwinia aroidae. Appl. Microbiol. 18: 64–67.

    CAS  Google Scholar 

  5. Pedreschi, F., K. Kaack, and K. Granby (2008) The effect of Asparaginase on acrylamide formation in French fries. Food Chem. 109: 386–392.

    Article  CAS  Google Scholar 

  6. Shaffer, P. M., H. N. Jr. Arst, L. Estberg, L. Fernando, T. Ly, and M. Sitter (1988) An asparaginase of Aspergillus nidulans is subject to oxygen repression in addition to nitrogen metabolite repression. Mol. Gen. Genet. 212: 337–341.

    Article  CAS  Google Scholar 

  7. Sarquis, M. I. M., E. M. M. Oliveira, A. S. Santos, and G. L. Costa (2004) Production of L-asparaginase by Filamentous Fungi. Mem. Inst. Oswaldo Cruz. 99: 489–492.

    Article  CAS  Google Scholar 

  8. Mishra, A. (2006) Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl. Biochem. Biotechnol. 135: 33–42.

    Article  CAS  Google Scholar 

  9. Sreenivasulu, V., K. N. Jayaveera, and P. M. Rao (2009) Optimization of process parameters for the production of L-asparaginase from an isolated fungus. Research Journal of Pharmacognosy and Phytochemistry 1: 30–34.

    Google Scholar 

  10. Baskar, G. and S. Renganathan (2009) Production of L-asparaginase from natural substrates by Aspergillus terreus MTCC 1782: Effect of substrate, supplementary nitrogen source and L-asparagine. Int. J. Chem. React. Eng. 7: 41.

    Google Scholar 

  11. Lapmak, K., S. Lumyong, S. Thongkuntha, P. Wongputtisin, and U. Sardsud (2010) L-asparaginase production by Bipolaris sp. BR438 isolated from brown rice in Thailand. Chiang Mai J. Sci. 37: 160–164.

    Google Scholar 

  12. Reddy, P. S., (ed.) (1988) Groundnut. Publication and information division, Indian Council of Agricultural Research, Krishi Anushandan Bhavan, Pusa, New Delhi.

    Google Scholar 

  13. Abdel-Fattah, Y. R., N. A. Soliman, A. A. Gaballa, S. A. Sabry, and A. I. El-Diwany (2002) Lipase production from a novel thermophilic Bacillus sp.: Application of Plackett Burman design for evaluating culture conditions affecting enzyme formation. Acta Microbiologica Polonica. 51: 353–66.

    CAS  Google Scholar 

  14. Aravindan, R., P. Anbumathi, and T. Viruthagiri (2008) Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chin. J. Biotech. 24: 436–444.

    Article  Google Scholar 

  15. Aravindan, R. and T. Viruthagiri (2009) Statistical experimental design for evaluation of medium components for lipase production by Rhizopus arrhizus MTCC 2233. LWT — Food Sci. Technol. 42: 985–992.

    Article  Google Scholar 

  16. Bari, N. M., M. Z. Alam, S. A. Muyibi, P. Jamal, and A. A. Mamun (2009) Improvement of production of citric acid from oil palm empty fruit bunches: Optimization of media by statistical experimental designs. Bioresour. Technol. 100: 3113–3120.

    Article  CAS  Google Scholar 

  17. Rai, S. K. and A. K. Mukherjee (2010) Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem. Eng. J. 48: 173–180.

    Article  CAS  Google Scholar 

  18. Ebrahimpour, A., R. Rahman, D. Ean Chng, M. Basri, and A. Salleh (2008) A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol. 8:96.

    Article  Google Scholar 

  19. Pal, M. P., B. K. Vaidya, K. M. Desai, R. M. Joshi, S. N. Nene, and B. D. Kulkarni (2009) Medium optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: Artificial intelligence verses a statistical approach. J. Ind. Microbiol. Biotechnol. 36: 747–756.

    Article  CAS  Google Scholar 

  20. Sivapathasekaran, C., S. Mukherjee, A. Ray, A. Gupta, and R. Sen (2010) Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Bioresour. Technol. 101: 2884–2887.

    Article  CAS  Google Scholar 

  21. Holland, J. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, Ann Arbor, MI.

    Google Scholar 

  22. Goldberg, D. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston, MA, USA.

    Google Scholar 

  23. Amena, S., N. Vishalakshi, M. Prabhakar, A. Dayanand, and K. Lingappa (2010) Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Braz. J. Microbiol. 41: 173–178.

    Article  CAS  Google Scholar 

  24. Kumar, S., V. V. Dasu, and K. Pakshirajan (2010) Localization and production of novel L-asparaginase from Pectobacterium carotovorum MTCC 1428. Proc. Biochem. 45: 223–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renganathan Sahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurunathan, B., Sahadevan, R. Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol Bioproc E 16, 50–58 (2011). https://doi.org/10.1007/s12257-010-0119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0119-7

Keywords

Navigation