Skip to main content
Log in

Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This paper entails a comprehensive study on production of a biosurfactant from Rhodococcus erythropolis MTCC 2794. Two optimization techniques—(1) artificial neural network (ANN) coupled with genetic algorithm (GA) and (2) response surface methodology (RSM)—were used for media optimization in order to enhance the biosurfactant yield by Rhodococcus erythropolis MTCC 2794. ANN and RSM models were developed, incorporating the quantity of four medium components (sucrose, yeast extract, meat peptone, and toluene) as independent input variables and biosurfactant yield [calculated in terms of percent emulsification index (% EI24)] as output variable. ANN-GA and RSM were compared for their predictive and generalization ability using a separate data set of 16 experiments, for which the average quadratic errors were ~3 and ~6%, respectively. ANN-GA was found to be more accurate and consistent in predicting optimized conditions and maximum yield than RSM. For the ANN-GA model, the values of correlation coefficient and average quadratic error were ~0.99 and ~3%, respectively. It was also shown that ANN-based models could be used accurately for sensitivity analysis. ANN-GA-optimized media gave about a 3.5-fold enhancement in biosurfactant yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434. doi:10.1007/s00253-001-0924-1

    Article  PubMed  CAS  Google Scholar 

  2. Bell KS, Philp JC, Aw DW, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210. doi:10.1046/j.1365-2672.1998.00525.x

    Article  PubMed  CAS  Google Scholar 

  3. Mukherjee S, Das P, Sen R (2007) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515. doi:10.1016/j.tibtech.2006.09.005

    Article  Google Scholar 

  4. Lotfy WA, Ghanem KM, El-Helow ER (2007) Citric acid production by a novel Aspergillus niger isolate. II. Optimization of process parameters through statistical experimental designs. Bioresour Technol 98:3470–3477. doi:10.1016/j.biortech.2006.11.032

    Article  PubMed  CAS  Google Scholar 

  5. Tanyildizi MS, Özer D, Elibol M (2005) Optimization of a-amylase production by Bacillus sp. using response surface methodology. Process Biochem 40:2291–2296. doi:10.1016/j.procbio.2004.06.018

    Article  CAS  Google Scholar 

  6. Jin H, Zheng Z, Gao M, Duan Z, Shi Z, Wang Z, Jin J (2007) Effective induction of phytase in Pichia pastoris fed-batch culture using an ANN pattern recognition model-based on-line adaptive control strategy. Biochem Eng J 37:26–33. doi:10.1016/j.bej.2007.03.009

    Article  CAS  Google Scholar 

  7. Partovi FY, Anandarajan M (2002) Classifying inventory using an artificial neural network approach. Comput Ind Eng 41:389–404. doi:10.1016/S0360-8352(01)00064-X

    Article  Google Scholar 

  8. Nagy ZK (2007) Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chem Eng J 127:95–109. doi:10.1016/j.cej.2006.10.015

    Article  CAS  Google Scholar 

  9. Desai KM, Badhe YP, Tambe SS, Kulkarni BD (2006) Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem Eng J 27:225–239. doi:10.1016/j.bej.2005.08.002

    Article  CAS  Google Scholar 

  10. Baş D, Boyaci IH (2007) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78:846–854. doi:10.1016/j.jfoodeng.2005.11.025

    Article  Google Scholar 

  11. Baş D, Dudak FC, Boyaci IH (2007) Modeling and optimization III: reaction rate estimation using artificial neural network (ANN) without a kinetic model. J Food Eng 79:622–628. doi:10.1016/j.jfoodeng.2006.02.021

    Article  Google Scholar 

  12. Desai KM, Vaidya BK, Singhal RS, Bhagwat SS (2005) Use of an artificial neural network in modeling yeast biomass and yield of β-glucan. Process Biochem 40:1617–1626. doi:10.1016/j.procbio.2004.06.015

    Article  CAS  Google Scholar 

  13. Jaiswal S, Benson ER, Bernard JC, Van Wicklen GL (2005) Neural network modelling and sensitivity analysis of a mechanical poultry catching system. Biosyst Eng 92:59–68. doi:10.1016/j.biosystemseng.2005.05.007

    Article  Google Scholar 

  14. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    Google Scholar 

  15. Chen CR, Ramaswamy HS (2002) Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms. J Food Eng 53:209–220. doi:10.1016/S0260-8774(01)00159-5

    Article  Google Scholar 

  16. Cheng J (2007) Hybrid genetic algorithms for structural reliability analysis. Comput Struct 85:1524–1533. doi:10.1016/j.compstruc.2007.01.018

    Article  Google Scholar 

  17. Nasseri M, Asghari K, Abedini MJ (2008) Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Syst Appl 35:1415–1421. doi:10.1016/j.eswa.2007.08.033

    Article  Google Scholar 

  18. Hassan MR, Nath B, Kirley M (2007) A fusion model of HMM, ANN and GA for stock market forecasting. Expert Syst Appl 33:171–180. doi:10.1016/j.eswa.2006.04.007

    Article  Google Scholar 

  19. Kim HT, Kim BY, Park EH, Kim JW, Hwang EW, Han SK, Cho S (2005) Computerized recognition of Alzheimer disease-EEG using genetic algorithms and neural network. Future Gener Comp Syst 21:1124–1130. doi:10.1016/j.future.2004.03.012

    Article  Google Scholar 

  20. Elalfi AE, Haque R, Elalami ME (2004) Extracting rules from trained neural network using GA for managing E-business. Appl Soft Comput J 4:65–77. doi:10.1016/j.asoc.2003.08.004

    Article  Google Scholar 

  21. Desai KM, Akolkar SK, Badhe YP, Tambe SS, Lele SS (2006) Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Process Biochem 41:1842–1848. doi:10.1016/j.procbio.2006.03.037

    Article  CAS  Google Scholar 

  22. Bapat PM, Wangikar PP (2004) Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Biotechnol Bioeng 86:201–208. doi:10.1002/bit.20056

    Article  PubMed  CAS  Google Scholar 

  23. Box G, Hunter W, Hunter J (1958) Statistics for experiments. Wiley, New York

    Google Scholar 

  24. Huang J, Mei L-H, Xia J (2007) Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnol Bioeng 96:924–931. doi:10.1002/bit.21162

    Article  PubMed  CAS  Google Scholar 

  25. Dutta JR, Dutta PK, Banerjee R (2004) Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochem 39:2193–2198. doi:10.1016/j.procbio.2003.11.009

    Article  CAS  Google Scholar 

  26. He L, Xu Y-Q, Zhang X-H (2008) Medium factors optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol Bioeng 100:250–259. doi:10.1002/bit.21767

    Article  PubMed  CAS  Google Scholar 

  27. Kuyukina MS, Ivshina I, Philip J, Christofi N, Dunbar S, Ritchkova M (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol 46:149–156

    CAS  Google Scholar 

  28. Nitschke N, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. doi:10.1016/j.biortech.2005.02.044

    Article  PubMed  CAS  Google Scholar 

  29. Tian B, Dong C, Chen L (1998) Preparation of Konjac glucomannan ester of palmitic acid and its emulsification. J Appl Polym Sci 67:1035–1038. doi:10.1002/(SICI)1097-4628(19980207)67:6<1035::AID-APP10>3.0.CO;2-#

    Article  CAS  Google Scholar 

  30. Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  31. Lowry OH, Roseburgh N, Farr AL, Randall R (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  32. Ghurye GL, Vipulanandan C (1994) A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol Bioeng 44:661–666. doi:10.1002/bit.260440514

    Article  PubMed  CAS  Google Scholar 

  33. Rodrigues L, Teixeira J, Oliveira R, van der Mei HC (2006) Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem 41:1–10. doi:10.1016/j.procbio.2005.01.030

    Article  CAS  Google Scholar 

  34. Bicca FC, Fleck LC, Ayub MAZ (1999) Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236. doi:10.1590/S0001-37141999000300008

    Article  CAS  Google Scholar 

  35. Bento FM, Gaylarde CC (1996) The production of interfacial emulsions by bacterial isolates from diesel. Int Biodeterior Biodegrad 38:31–33. doi:10.1016/S0964-8305(96)00021-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. S. S. Bhagwat (ICT, Mumbai) for his help in measurement of surface tension and CMC. BKV would like to acknowledge the SRF grant from CSIR-India. RMJ would like to thank DST-India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay N. Nene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, M.P., Vaidya, B.K., Desai, K.M. et al. Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotechnol 36, 747–756 (2009). https://doi.org/10.1007/s10295-009-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0547-6

Keywords

Navigation