Skip to main content
Log in

Recent advances in the development of bioelectronic nose

  • Reviews
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The olfactory system has the ability to discriminate and identify thousands of odorant compounds at very low concentrations. Recently, many researchers have been trying to develop artificial sensing devices that are based on the olfactory system. A bioelectronic nose, which uses olfactory receptors (ORs) as sensing elements, would benefit naturally optimized molecular recognition. Accordingly, ORs can be effectively used as a biological element in bioelectronic noses. Bioelectronic nose can be classified into cell-based and protein-based biosensors. The cell-based biosensor uses living cells that express olfactory receptors as the biological sensing elements and the protein-based biosensor uses the olfactory receptor protein. The binding of odorant molecules to the ORs can be measured using various methods such as piezoelectric, optic, and electric devices. Thus, bioelectronic nose can be developed by combining the biological sensing elements with these non-biological devices. The application of bioelectronic nose in a wide range of different scientific and medical fields is essentially dependent on the development of highly sensitive and selective biosensors. These sensor systems for the rapid detection of specific odorants are crucial for environmental monitoring, anti-bioterrorism, disease diagnostics, and food safety. In this article, we reviewed recent advances in the development of bioelectronic nose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buck, L. and R. Axel (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187.

    Article  CAS  Google Scholar 

  2. Malnic, B., J. Hirono, T. Sato, and L. B. Buck (1999) Combinatorial receptor codes for odors. Cell 96: 713–723.

    Article  CAS  Google Scholar 

  3. Krautwurst, D., K. W. Yau, and R. R. Reed (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95: 917–926.

    Article  CAS  Google Scholar 

  4. Mori, K., H. Nagao, and Y. Toshihara (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286: 711–715.

    Article  CAS  Google Scholar 

  5. Firestein, S. (2001) How the olfactory system makes sense of scents? Nature 413: 211–218.

    Article  CAS  Google Scholar 

  6. Akimov, V., E. Alfinito, J. Bausells, I. Benilova, I. C. Paramo, A. Errachid, G. Ferrari, L. Fumagalli, G. Gomila, J. Grosclaude, Y. Hou, N. Jaffrezic-Renault, C. Martelet, E. Pajot-Augy, C. Pennetta, M.-A. Persuy, M. Pla-Roca, L. Reggiani, S. Rodrigues-Segui, O. Ruiz, R. Salesse, J. Samitier, M. Sampietro, A. P. Soldatkin, J. Vidic, and G. Villanueva (2008) Nanobiosensors based on individual olfactory receptors. Analog. Integr. Circ. Sig. Process 57: 197–203.

    Article  Google Scholar 

  7. Turner, A. P. F. and N. Magan (2004) Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2: 161–166.

    Article  CAS  Google Scholar 

  8. Dicknson, T. A., J. White, J. S. Kauer, and D. R. Walt (1999) Current trends in ‘artificial-nose’ technology. Trends Biotechnol. 16: 250–258.

    Article  Google Scholar 

  9. Kim, T. H., S. H. Lee, J. Lee, H. S. Song, E. H. Oh, T. H. Park, and S. Hong (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 21: 91–94.

    Article  CAS  Google Scholar 

  10. Vidic, J., M. Pla-Roca, J. Grosclaude, M.-A. Persuy, R. Monnerie, D. Caballero, A. Errachid, Y. Hou, N. Jaffrezic-Renault, R. Salesse, E. Pajot-Augy, and J. Samitier (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal. Chem. 79: 3280–3290.

    Article  CAS  Google Scholar 

  11. Wu, T. Z. (1999) A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens. Bioelectron. 14: 9–18.

    Article  CAS  Google Scholar 

  12. Liu, Q., H. Cai, Y. Xu, Y. Li, R. Li, and P. Wang (2006) Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens. Bioelectron. 22: 318–322.

    Article  CAS  Google Scholar 

  13. Jasmina, M., M. A. Persuy, E. Godel, J. Aioun, I. Con nertion, R. Salesse, and E. Pajot-Augy (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS. J. 272: 524–537.

    Article  Google Scholar 

  14. Ko, H. J. and T. H. Park (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol. Chem. 387: 59–68.

    Article  CAS  Google Scholar 

  15. Ko, H. J. and T. H. Park (2007) Functional analysis of olfactory receptors expressed in a HEK-293 cell system by using cameleons. J. Microbiol. Biotechnol. 17: 928–933.

    CAS  Google Scholar 

  16. Marrakchi, M., J. Vidic, N. Jaffrezic-Renault, C. Martelet, and E. Pajot-Augy (2007) A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur. Biophys. J. 36: 1015–1018.

    Article  CAS  Google Scholar 

  17. Wu, T. Z., Y. R. Lo, and E. C. Chan (2001) Exploring the recognized bio-mimicry materials for gas sensing. Biosens. Bioelectron. 16: 945–953.

    Article  CAS  Google Scholar 

  18. Benilova, I., V. I. Chegel, Y. V. Ushenin, J. Vidic, A. P. Soldatkin, C. Martelet, E. Pajot, and N. Jaffrezic-Renault (2007) Stimulation of human olfactory receptor 17–40 with odorants probed by surface plasmon resonance. Eur. Biophys. J. 37: 807–814.

    Article  Google Scholar 

  19. Zhang, X. and S. Firestein (2002) The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5: 124–133.

    CAS  Google Scholar 

  20. Glusman, G., I. Yanai, I. Rubin, and D. Lancet (2001) The Complete Human Olfactory Subgenome. Genom. Res. 11: 685–702.

    Article  CAS  Google Scholar 

  21. Zozulya, S., F. Echeverri, and T. Nguyen (2001) The human olfactory receptor repertoire. Genome Biol. 2: 0018.0011–0018.0012.

    Article  Google Scholar 

  22. Touhara, K. (2007) Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assay. Neurochem. Int. 51: 132–139.

    Article  CAS  Google Scholar 

  23. Song, H. S., S. H. Lee, E. H. Oh, and T. H. Park (2009) Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr. Microbiol. 59: 309–314.

    Article  CAS  Google Scholar 

  24. Katada, S., T. Nakagawa, H. Kataoka, and K. Touhara (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem. Biophys. Res. Commun. 305: 964–969.

    Article  CAS  Google Scholar 

  25. Shirokova, E., K. Schmiedeberg, P. Bedner, H. Niessen, K. Willecke, J. D. Raguse, W. Meyerhof, and D. Krautwurst (2005) Identification of specific ligands for orphan olfactory receptor. J. Biol. Chem. 280: 11807–11815.

    Article  CAS  Google Scholar 

  26. Matarazzo, V., O. Clot-Faybesse, B. Marcet, G. Guiraudie-Capraz, B. Atanasova, G. Devauchelle, M. Cerutti, P. Etievant, and C. Ronin (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem. Senses. 30: 195–207.

    Article  CAS  Google Scholar 

  27. Saito, H., M. Kubota, R. W. Roberts, Q. Chi, and H. Matsunami (2004) RTP Family Members Induce Functional Expression of Mammalian Odorant Receptors. Cell 119: 679–691.

    Article  CAS  Google Scholar 

  28. Neuhaus, E. M., A. Mashukova, W. Zhang, J. Barbour, and H. Hatt (2006) A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chem. Senses. 31: 445–452.

    Article  CAS  Google Scholar 

  29. Mashukova, A., M. Spehr, H. Hatt, and E. M. Neuhaus (2006) β-arrestin2-mediated internalization of mammalian odorant receptors. J. Neurosci. 26: 9902–9912.

    Article  CAS  Google Scholar 

  30. Wu, C., P. Chen, H. Yu, Q. Liu, X. Zong, H. Cai, and P. Wang (2009) A novel biomimetic olfactory-based biosesor for single olfactory sensory neuron monitoring. Biosens. Bioelectron. 24: 1498–1502.

    Article  CAS  Google Scholar 

  31. Stein, B., M. George, H. E. Gaub, and W. J. Parak (2004) Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor. Sens. Actuators. B. 98: 299–304.

    Article  Google Scholar 

  32. Xu, G. X., X. S. Ye, L. Qin, Y. Xu, Y. Li, R. Li, and P. Wang (2005) Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens. Bioelectron. 20: 1757–1763.

    Article  CAS  Google Scholar 

  33. Hou, Y., N. Jaffrezic-Renault, C. Martelet, A. Zhang, J. Minic-Vidic, T. Gorojankina, M.-A. Persuy, E. Pajot-Augy, R. Salesse, V. Akimov, A. Reggiani, C. Pennetta, E. Alfinito, O. Ruiz, G. Gomila, J. Samitier, and A. Errachid (2007) A novel detection strategy for odorant molecules based on controlled bioengineering of rat olfactory recpetor I7. Biosens. Bioelectron. 22: 1550–1555.

    Article  CAS  Google Scholar 

  34. Lee, S. H., S. B. Jun, H. J. Ko, S. J. Kim, and T. H. Park (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens. Bioelectron. 24: 2659–2664.

    Article  CAS  Google Scholar 

  35. Lee, S. H., S. H. Jeong, S. B. Jun, S. J. Kim, and T. H. Park (2009) Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 30: 3283–3288.

    Article  CAS  Google Scholar 

  36. Homola, J., S. S. Yee, and G. Gauglitz (1999) Surface plasmon resonance sensors: review Sens. Actuator. B. 54. 3–15.

    Article  Google Scholar 

  37. Rich. R. L. and D. G. Myszka (2008) Survey of the year 2007 commercial optical biosensor literature. J. Mol. Recognit. 21: 355–400.

    Article  CAS  Google Scholar 

  38. McDonnell, J. M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5: 572–577.

    Article  CAS  Google Scholar 

  39. Harding, P. J., T. C. Hadingham, J. M. McDonnell, and A. Watts (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur. Biophys. J. 35: 709–712.

    Article  CAS  Google Scholar 

  40. Stenlund, P., G. J. Babcock, J. Sodroski, and D. G. Myszka (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal. Biochem. 316: 243–250.

    Article  CAS  Google Scholar 

  41. Bieri, C., O. P. Ernst, S. Heyse, K. P. Hofmann, and H. Vogel (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat. Biotech. 17: 1105–1108.

    Article  CAS  Google Scholar 

  42. Komolov, K. E., I. Senin, P. P. Philippov, and K. W. Koch (2006) Surface plasmon resonance study of G pro tein/receptor coupling in a lipid bilayer-free system. Anal. Chem. 78: 1228–1234.

    Article  CAS  Google Scholar 

  43. Vidic, J. M., J. Grosclaude, M. A. Persuy, A. Aioun, R. Salesse, and E. Pajot-Augy (2006) Quantitative assessment of olfacotry recpetors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip. 6: 1026–1032.

    Article  CAS  Google Scholar 

  44. Wetzel, C. H., M. Oles, C. Wellerdieck, M. Kuczkowiak, G. Gisselmann, and H. Hatt (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis Oocytes. J. Neurosci. 19: 7426–7433.

    CAS  Google Scholar 

  45. Lee, J. Y., H. J. Ko, S. H. Lee, and T. H. Park (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzy. Microb. Technol. 39: 375–380.

    Article  CAS  Google Scholar 

  46. Lee, S. H., H. J. Ko, and T. H. Park (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens. Bioelectron. 25: 55–60.

    Article  CAS  Google Scholar 

  47. Ameer, Q. and S. B. Adeloju (2005) Polypyrrole-based electronic noses for environmental and industrial analysis. Sens. Actuators. B. 106: 541–552.

    Article  Google Scholar 

  48. Wyszynski, B., P. Somboon, and T. Nakamoto (2007) Pegylated lipids as coatings for QCM odor-sensors. Sens. Actuators. B. 121: 538–544.

    Article  Google Scholar 

  49. Kanazawa, K. and N. J. Cho (2009) Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics. J. Sens. 2009: Doi:10.1155/2009/824947.

  50. Martin, S. J., V. E. Granstaff, and G. C. Frye (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63: 2272–2281.

    Article  CAS  Google Scholar 

  51. Sung, J. H., H. J. Ko, and T. H. Park (2006) Piezoelectric biosensor using olfactory recpetor protein expressed in Escherichia coli. Biosens. Bioelectron. 21: 1981–1986.

    Article  CAS  Google Scholar 

  52. Ko, H. J. and T. H. Park (2005) Piozoelectric olfactory receptor biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system Biosens. Bioelectron. 20: 1327–1332.

    Article  CAS  Google Scholar 

  53. Aleshin, A. N. (2006) Polymer nanofibers and nanotubes: charge transport and device applications. Adv. Mat. 18: 17–27.

    Article  CAS  Google Scholar 

  54. Kaiser, A. B. (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64: 1–49.

    Article  CAS  Google Scholar 

  55. Li, J., Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyapan (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3: 929–933.

    Article  CAS  Google Scholar 

  56. Vogel, R. and F. Siebert (2001) Conformations of the active and inactive states of opsin. J. Biol. Chem. 276: 38487–38493.

    Article  CAS  Google Scholar 

  57. Yoon, H., S. H. Lee, O. S. Kwon, H. S. Song, E. H. Oh, T. H. Park, and J. Jang (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: High-performance transducers for FET-Type Bioelectronic nose. Angew. Chem. Int. Ed. 48: 2755–2758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Park, T.H. Recent advances in the development of bioelectronic nose. Biotechnol Bioproc E 15, 22–29 (2010). https://doi.org/10.1007/s12257-009-3077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3077-1

Keywords

Navigation