Skip to main content

Concept of Bioelectronic Nose

  • Chapter
  • First Online:
Bioelectronic Nose
  • 1255 Accesses

Abstract

Sense of smell is an important sense to recognize environmental conditions and dangerous situations. Following the identification of the olfactory mechanism in the early 1990s, extensive studies to develop electronic devices that mimic the function of animal noses have been conducted. Most devices have been composed of an array of several sensors that react to chemical compounds. The odor is characterized by analyzing the response patterns generated by the sensor array. However, such devices have limitations in terms of sensitivity and selectivity. Hence, a novel concept for sensor devices functionalized with odor-recognizing biomolecules was suggested. Sensors which use biomolecules as a primary sensing material are commonly called bioelectronic noses. A bioelectronic nose generally consists of primary and secondary transducers. The primary transducer is a biological recognition element such as olfactory receptors and odorant-binding proteins. The secondary transducer is a highly sensitive optical or electrical sensor platform that converts biological events into measurable signals. In this chapter, the basic concept and principles of bioelectronic noses are described. In addition, specific characteristics of bioelectronic noses and the current issues are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133

    CAS  PubMed  Google Scholar 

  2. Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 101(7):2156–2161

    Google Scholar 

  3. Quignon P, Giraud M, Rimbault M, Lavigne P, Tacher S, Morin E, Retout E, Valin A-S, Lindblad-Toh K, Nicolas J, Galibert F (2005) The dog and rat olfactory receptor repertoires. Genome Biol 6(10):R83

    Google Scholar 

  4. Ashton EH, Eayrs JT, Moulton DG (1957) Olfactory acuity in the dog. Nature 179(4569):1069–1070

    Article  CAS  PubMed  Google Scholar 

  5. Moulton DG, Ashton EH, Eayrs JT (1960) Studies in olfactory acuity. 4. Relative detectability of n-aliphatic acids by the dog. Anim Behav 8(3–4):117–128

    Article  Google Scholar 

  6. Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54(3):487–500

    Article  CAS  PubMed  Google Scholar 

  7. Gazit I, Lavner Y, Bloch G, Azulai O, Goldblatt A, Terkel J (2003) A simple system for the remote detection and analysis of sniffing in explosives detection dogs. Behav Res Methods Instrum Comput 35(1):82–89

    Article  PubMed  Google Scholar 

  8. Cornu J-N, Cancel-Tassin G, Ondet V, Girardet C, Cussenot O (2011) Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol 59(2):197–201

    PubMed  Google Scholar 

  9. Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J, Friedel G, Walles T (2012) Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39(3):669–676

    Article  CAS  PubMed  Google Scholar 

  10. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T (2006) Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther 5(1):30–39

    Article  PubMed  Google Scholar 

  11. Bodyak N, Slotnick B (1999) Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem Senses 24(6):637–645

    Article  CAS  PubMed  Google Scholar 

  12. Clarke S, Trowill JA (1971) Sniffing and motivated behavior in the rat. Physiol Behav 6(1):49–52

    Article  CAS  PubMed  Google Scholar 

  13. Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci 6(11):1224–1229

    Article  CAS  PubMed  Google Scholar 

  14. Youngentob SL, Mozell MM, Sheehe PR, Hornung DE (1987) A quantitative analysis of sniffing strategies in rats performing odor detection tasks. Physiol Behav 41(1):59–69

    Article  CAS  PubMed  Google Scholar 

  15. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957

    Article  CAS  PubMed  Google Scholar 

  16. Dalton P (2000) Psychophysical and behavioral characteristics of olfactory adaptation. Chem Senses 25(4):487–492

    Article  CAS  PubMed  Google Scholar 

  17. O’Mahony M (1986) Sensory adaptation. J Sens Stud 1(3–4):237–258

    Article  Google Scholar 

  18. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352–355

    Article  CAS  PubMed  Google Scholar 

  19. Freund MS, Lewis NS (1995) A chemically diverse conducting polymer-based “electronic nose”. Proc Natl Acad Sci U S A 92(7):2652–2656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gardner JW, Shurmer HV, Tan TT (1992) Application of an electronic nose to the discrimination of coffees. Sensor Actuat B-Chem 6(1–3):71–75

    Article  CAS  Google Scholar 

  21. Pearce TC, Gardner JW, Friel S, Bartlett PN, Blair N (1993) Electronic nose for monitoring the flavour of beers. Analyst 118(4):371–377

    Article  CAS  Google Scholar 

  22. Gardner JW, Hines EL, Wilkinson M (1990) Application of artificial neural networks to an electronic olfactory system. Meas Sci Technol 1(5):446

    Article  Google Scholar 

  23. Shurmer H, Fard A, Barker J, Bartlett P, Dodd G, Hayat U (1987) Development of an electronic nose. Phys Technol 18(4):170

    Article  CAS  Google Scholar 

  24. Buck LB, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    Article  CAS  PubMed  Google Scholar 

  25. Ressler KJ, Sullivan SL, Buck LB (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73(3):597–609

    Article  CAS  PubMed  Google Scholar 

  26. Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79(7):1245–1255

    Article  CAS  PubMed  Google Scholar 

  27. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413(6852):211–218

    Article  CAS  PubMed  Google Scholar 

  28. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723

    Article  CAS  PubMed  Google Scholar 

  29. Branca A, Simonian P, Ferrante M, Novas E, Negri RMn (2003) Electronic nose based discrimination of a perfumery compound in a fragrance. Sens Actuat B-Chem 92(1–2):222–227

    Article  CAS  Google Scholar 

  30. Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 48(6–7):427–437

    Article  CAS  PubMed  Google Scholar 

  31. Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2000) Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array. Sens Actuators B-Chem 69(3):230–235

    Article  CAS  Google Scholar 

  32. Cerrato Oliveros MC, Pérez Pavón JL, García Pinto C, Fernández Laespada ME, Moreno Cordero B, Forina M (2002) Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal Chim Acta 459(2):219–228

    Article  CAS  Google Scholar 

  33. Dutta R, Hines EL, Gardner JW, Kashwan KR, Bhuyan M (2003) Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens Actuat B-Chem 94(2):228–237

    Article  CAS  Google Scholar 

  34. El Barbri N, Amari A, Vinaixa M, Bouchikhi B, Correig X, Llobet E (2007) Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage. Sens Actuat B-Chem 128(1):235–244

    Article  CAS  Google Scholar 

  35. González Martín Y, Cerrato Oliveros MC, Pérez Pavón JL, García Pinto C, Moreno Cordero B (2001) Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils. Anal Chimica Acta 449(1–2):69–80

    Article  Google Scholar 

  36. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Electronic sensing of vapors with organic transistors. Appl Phys Lett 78(15):2229–2231

    Article  CAS  Google Scholar 

  37. Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sens Actuat B-Chem 72(1):41–50

    Article  CAS  Google Scholar 

  38. Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P (1994) Towards an integrated electronic nose using conducting polymer sensors. Sens Actuat B-Chem 18(1–3):221–228

    Article  CAS  Google Scholar 

  39. Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuat B-Chem 67(3):312–316

    Article  CAS  Google Scholar 

  40. Hao HC, Tang KT, Ku PH, Chao JS, Li CH, Yang CM, Yao DJ (2010) Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics. Sens Actuat B-Chem 146(2):545–553

    Article  CAS  Google Scholar 

  41. Gan HL, Man YBC, Tan CP, NorAini I, Nazimah SAH (2005) Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chem 89(4):507–518

    Article  CAS  Google Scholar 

  42. García M, Fernández MJ, Fontecha JL, Lozano J, Santos JP, Aleixandre M, Sayago I, Gutiérrez J, Horrillo MC (2006) Differentiation of red wines using an electronic nose based on surface acoustic wave devices. Talanta 68(4):1162–1165

    Article  PubMed  Google Scholar 

  43. Li C, Heinemann P, Sherry R (2007) Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sens Actuat B-Chem 125(1):301–310

    Article  CAS  Google Scholar 

  44. Göpel W (1998) Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses. Sens Actuat B-Chem 52(1–2):125–142

    Article  Google Scholar 

  45. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94

    Article  CAS  Google Scholar 

  46. Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33(6):1722–1729

    Article  CAS  PubMed  Google Scholar 

  47. Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng 15(1):22–29

    Article  CAS  Google Scholar 

  48. Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101(8):2584–2589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Buck LB (2004) Olfactory receptors and odor coding in mammals. Nutr Rev 62:S184–S188

    Article  Google Scholar 

  50. Lim JH, Park J, Ahn JH, Jin HJ, Hong S, Park TH (2013) A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens Bioelectron 39(1):244–249

    Article  CAS  PubMed  Google Scholar 

  51. Kiefer H, Krieger J, Olszewski JD, von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35(50):16077–16084

    Article  CAS  PubMed  Google Scholar 

  52. Ko HJ, Park TH (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem, 387(1):59–68

    Article  CAS  PubMed  Google Scholar 

  53. Krautwurst D, Yau K-W, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95(7):917–926

    Article  CAS  PubMed  Google Scholar 

  54. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S (1998) Functional expression of a mammalian odorant receptor. Science 279(5348):237–242

    Article  CAS  PubMed  Google Scholar 

  55. Wu L, Pan Y, Chen G-Q, Matsunami H, Zhuang H (2012) Receptor-transporting Protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J Biol Chem 287(26):22287–22294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282(20):15284–15293

    Article  CAS  PubMed  Google Scholar 

  57. Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3(9):1402–1413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 159(2):189–194

    Article  CAS  PubMed  Google Scholar 

  59. Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etiévant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Sens 30(3):195–207

    Article  CAS  Google Scholar 

  60. Minic J, Persuy MA, Godel E, Aioun J, Connerton I, Salesse R, Pajot-Augy E (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J 272(2):524–537

    Article  CAS  PubMed  Google Scholar 

  61. Song HS, Lee SH, Oh EH, Park TH (2009) Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr Microbiol 59(3):309–314

    Article  CAS  PubMed  Google Scholar 

  62. Ko HJ, Park TH (2005) Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron 20(7):1327–1332

    Article  CAS  PubMed  Google Scholar 

  63. Sankaran S, Panigrahi S, Mallik S (2011) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens Actuat B-Chem 155(1):8–18

    Article  CAS  Google Scholar 

  64. Sankaran S, Panigrahi S, Mallik S (2011) Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron 26(7):3103–3109

    Article  CAS  PubMed  Google Scholar 

  65. Sung JH, Ko HJ, Park TH (2006) Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron 21(10):1981–1986

    Article  CAS  PubMed  Google Scholar 

  66. Wu T-Z (1999) A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron 14(1):9–18

    Article  CAS  PubMed  Google Scholar 

  67. Benilova I, Chegel V, Ushenin Y, Vidic J, Soldatkin A, Martelet C, Pajot E, Jaffrezic-Renault N (2008) Stimulation of human olfactory receptor 17–40 with odorants probed by surface plasmon resonance. Eur Biophys J 37(6):807–814

    Article  CAS  PubMed  Google Scholar 

  68. Vidic J, Pla-Roca M, Grosclaude J, Persuy M-A, Monnerie R, Caballero D, Errachid A, Hou Y, Jaffrezic-Renault N, Salesse R, Pajot-Augy E, Samitier J (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem 79(9):3280–3290

    Article  CAS  PubMed  Google Scholar 

  69. Vidic JM, Grosclaude J, Persuy M-A, Aioun J, Salesse R, Pajot-Augy E (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6(8):1026–1032

    Article  CAS  PubMed  Google Scholar 

  70. Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chem Int Ed Engl 48(15):2755–2758

    Google Scholar 

  71. Lee SH, Jin HJ, Song HS, Hong S, Park TH (2012) Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotechnol 157(4):467–472

    Article  CAS  PubMed  Google Scholar 

  72. Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12(10):5082–5090

    Article  CAS  PubMed  Google Scholar 

  73. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25(7):1806–1815

    Article  CAS  PubMed  Google Scholar 

  74. Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J Neurosci 19(17):7426–7433

    CAS  PubMed  Google Scholar 

  75. Lee JY, Ko HJ, Lee SH, Park TH (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb Technol 39(3):375–380

    Article  CAS  Google Scholar 

  76. Lee SH, Jeong SH, Jun SB, Kim SJ, Park TH (2009) Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 30(18):3283–3288

    Article  CAS  PubMed  Google Scholar 

  77. Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron 24(8):2659–2664

    Article  CAS  PubMed  Google Scholar 

  78. Lee SH, Ko HJ, Park TH (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron 25(1):55–60

    Article  CAS  PubMed  Google Scholar 

  79. Pick H, Schmid EL, Tairi A-P, Ilegems E, Hovius R, Vogel H (2005) Investigating cellular signaling reactions in single attoliter vesicles. J Am Chem Soc 127(9):2908–2912

    Article  CAS  PubMed  Google Scholar 

  80. Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35(1):335–341

    Article  CAS  PubMed  Google Scholar 

  81. Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254

    Article  CAS  PubMed  Google Scholar 

  82. Lim JH, Park J, Oh EH, Ko HJ, Hong S, Park TH (2013) Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthc Mater. doi: 10.1002/adhm.201300174

    Google Scholar 

  83. Auge J, Hauptmann P, Hartmann J, Rösler S, Lucklum R (1995) New design for QCM sensors in liquids. Sens Actuat B-Chem 24(1–3):43–48

    Article  CAS  Google Scholar 

  84. Resa P, Castro P, Rodríguez-López J, Elvira L (2012) Broadband spike excitation method for in-liquid QCM sensors. Sens Actuat B-Chem 166–167(0):275–280

    Article  Google Scholar 

  85. Shen S, Liu T, Guo J (1998) Optical phase-shift detection of surface plasmon resonance. Appl Optics 37(10):1747–1751

    Article  CAS  Google Scholar 

  86. Benilova IV, Minic Vidic J, Pajot-Augy E, Soldatkin AP, Martelet C, Jaffrezic-Renault N (2008) Electrochemical study of human olfactory receptor OR 17–40 stimulation by odorants in solution. Mater Sci Eng C 28(5–6):633–639

    Article  CAS  Google Scholar 

  87. Hou Y, Jaffrezic-Renault N, Martelet C, Zhang A, Minic-Vidic J, Gorojankina T, Persuy M-A, Pajot-Augy E, Salesse R, Akimov V, Reggiani L, Pennetta C, Alfinito E, Ruiz O, Gomila G, Samitier J, Errachid A (2007) A novel detection strategy for odorant molecules based on controlled bioengineering of rat olfactory receptor I7. Biosens Bioelectron 22(7):1550–1555

    Article  CAS  PubMed  Google Scholar 

  88. Rao SG, Huang L, Setyawan W, Hong S (2003) Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425(6953):36–37

    Article  CAS  PubMed  Google Scholar 

  89. Kim B, Song HS, Jin HJ, Park EJ, Lee SH, Lee BY, Park TH, Hong S (2013) Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. Nanotechnology 24(28):285501

    Article  PubMed  Google Scholar 

  90. Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim U-k, Park TH, Hong S (2011) “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11(13):2262–2267

    Article  CAS  PubMed  Google Scholar 

  91. Kwon OS, Ahn SR, Park SJ, Song HS, Lee SH, Lee JS, Hong J-Y, Lee JS, You SA, Yoon H, Park TH, Jang J (2012) Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. ACS Nano 6(6):5549–5558

    Article  CAS  PubMed  Google Scholar 

  92. Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH (2012) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13(1):172–178

    Article  PubMed  Google Scholar 

  93. Egashira M, Shimizu Y, Takao Y (1990) Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness. Sens Actuat B-Chem 1(1–6):108–112

    Article  CAS  Google Scholar 

  94. Oka Y, Omura M, Kataoka H, Touhara K (2004) Olfactory receptor antagonism between odorants. EMBO J 23(1):120–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Jacquier V, Pick H, Vogel H (2006) Characterization of an extended receptive ligand repertoire of the human olfactory receptor OR17-40 comprising structurally related compounds. J Neurochem 97(2):537–544

    Article  CAS  PubMed  Google Scholar 

  96. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    Article  CAS  PubMed  Google Scholar 

  97. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9

    Google Scholar 

  98. Briand L, Eloit C, Nespoulous C, Bézirard V, Huet J-C, Henry C, Blon F, Trotier D, Pernollet J-C (2002) Evidence of an odorant-binding protein in the human olfactory mucus: location, structural characterization, and odorant-binding properties. Biochemistry 41(23):7241–7252

    Article  CAS  PubMed  Google Scholar 

  99. Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29(3):199–228

    Article  CAS  PubMed  Google Scholar 

  100. Goldsmith BR, Mitala JJ, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG, Luetje CW, Gelperin A, Rhodes PA, Discher BM, Johnson ATC (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5(7):5408–5416

    Article  CAS  PubMed  Google Scholar 

  101. Hoare SRJ (2005) Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 10(6):417–427

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (No. 2013003890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, J., Park, T. (2014). Concept of Bioelectronic Nose. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_1

Download citation

Publish with us

Policies and ethics