Skip to main content
Log in

Optimization of lipase production using differential evolution

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Differential Evolution (DE) coupled with Response Surface Methodology (RSM) has been used for the optimization of extracellular lipolytic enzyme production by Rhizopus oryzae NRRL 3562 through sold state fermentation. The input space of the experimentally validated RSM-model was optimized using a novel Differential Evolution approach (DE), which works based on the natural selection and survival of the fittest concepts of the biological world. The maximum lipase activity of 96.52 U/gds was observed with the DE stated optimum values of 35.59°C, 1.50, 5.28, and 4.83 days for temperature, liquid to solid ratio, pH, and incubation time respectively. The optimal levels of control parameters namely number of population, generations, crossover operator, and mutation constant were equal to 20, 50, 0.6, and 0.20, respectively. The developed model and its optimization are generic in nature and thus appear to be useful for the design and scale-up of the extracellular lipase production by R. oryzae NRRL 3562 through solid state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reetz, M. R. (2002) Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6: 145–150.

    Article  CAS  Google Scholar 

  2. Jaeger, K. E. and E. Thorsten (2002) Lipases for biotechnology. Curr. Opin. Biotech. 13: 390–397.

    Article  CAS  Google Scholar 

  3. Hasan, F., A. A. Shah, and A. Hameed (2006) Industrial applications of microbial lipases. Enz. Microb. Tech. 39: 235–251.

    Article  CAS  Google Scholar 

  4. Houde, A., A. Kademi, and D. Leblanc (2004) Lipases and their industrial applications: an overview. Appl. Biochem. Biotechnol. 118: 155–170.

    Article  CAS  Google Scholar 

  5. Tunga, R., B. Shrivastava, and R. Banerjee (2003) Purification and characterization of a protease from solid state cultures of Aspergillus parasiticus. Proc. Biochem. 38: 1553–1558.

    Article  CAS  Google Scholar 

  6. Mukherjee, G. and R. Banerjee (2004) Biosynthesis of tannase and gallic acid from tannin rich substrates by R. oryzae and Aspergillus foetidus. J. Basic Microbiol. 44: 42–48.

    Article  CAS  Google Scholar 

  7. Nigam, P. and D. Singh (1994) Solid-state (substrate) fermentation systems and their applications in biotechnology. J. Basic Microbiol. 34: 405–423.

    Article  CAS  Google Scholar 

  8. Iftikhar, T., N. Mubashir, A. Munazza, H. Ikram-ul, and I. R. Muhammad (2008) Maximization of intracellular lipase production in a lipase-overproducing mutant derivative of Rhizopus oligosporus DGM 31: A kinetic study. Food Technol. Biotechnol. 46: 402–412.

    CAS  Google Scholar 

  9. Shu, Y. S. and Y. Xu (2008) Solid-state fermentation for ‘wholecell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme. Proc. Biochem. 43: 219–224.

    Article  Google Scholar 

  10. Rodriguez, J. A., J. C. Mateos, J. Nungaray, V. González, T. Bhagnagar, S. Roussos, J. Cordova, and J. Baratti (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Proc. Biochem. 41: 2264–2269.

    Article  CAS  Google Scholar 

  11. Matsumoto, T., S. Takahashi, M. Ueda, A. Tanaka, H. Fukuda, and A. Kondo (2002) Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. J. Mol. Catal. B: Enz. 17: 143–149.

    Article  CAS  Google Scholar 

  12. Hiol, A., M. D. Jonzo, N. Rugani, D. Druet, L. Sarda, and L. C. Comeau (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enz. Microb. Technol. 26: 421–430.

    Article  CAS  Google Scholar 

  13. Essamri, M., D. Valerie, and C. Louis (1998) Optimization of lipase production by Rhizopus oryzae and study on the stability of lipase activity in organic solvents. J. Biotechnol. 60: 97–103.

    Article  CAS  Google Scholar 

  14. Myers, R. H. and D. C. Montgomery (2005) Response surface methodology: process and product optimization using designed experiments. John Wiley and Sons, NY, USA.

    Google Scholar 

  15. Storn, R. and K. Price (1997) Differential Evolution-A simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global. Optim. 11: 341–359.

    Article  Google Scholar 

  16. Kumari, A., P. Mahapatra, V. K. Garlapati, and R. Banerjee (2008) Comparative study of thermostabilty and ester synthesis ability of free and immobilized lipases on cross linked silica gel. Bioproc. Biosyst. Eng. 31: 291–298.

    Article  CAS  Google Scholar 

  17. Kordel, M., B. Hofmann, D. Schomburg, and R. D. Schmid (1991) Extracellular lipase of Pseudomonas sp. strain ATCC-21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J. Bacteriol. 173: 4836–4841.

    CAS  Google Scholar 

  18. Montgomery, D. C. and G. C. Runger (2002) Applied Statistics and Probability for Engineers. John Wiley and Sons (Asia), Singapore.

    Google Scholar 

  19. Ul-haq, I., S. Idrees, and M. Ibrahim Rajoka (2002) Production of lipases by Rhizopus oligosporous by solid-state fermentation. Proc. Biochem. 37: 637–641.

    Article  CAS  Google Scholar 

  20. Cordova, J., M. Nemmaoui, M. Isma li-Alaoui, A. Morin, S. Roussos, M. Raimbault, and B. Benjilali (1998) Lipase production by solid state fermentation of olive cake and sugar cane bagasse. J. Mol. Catal. B: Enz. 5: 75–78.

    Article  CAS  Google Scholar 

  21. Kempka, A. P., N. L. Lipke, T. L. F. Pinheiro, S. Menoncin, H. Treichel, D. M. G. Freire, M. D. Luccio, and D. D. Oliveira (2008) Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solidstate fermentation. Bioproc. Biosyst. Eng. 31:119–125.

    Article  CAS  Google Scholar 

  22. Gombert, A. K., A. L. Pinto, L. R. Castilho, and D. M. G. Freire (1999) Lipase production by Penicillium restrictum in solidstate fermentation using babassu oil cake as substrate. Proc. Biochem. 35: 85–90.

    Article  CAS  Google Scholar 

  23. Sun, S.Y. and Y. Xu (2008) Solid-state fermentation for ‘wholecell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme. Proc. Biochem. 43:219–224.

    Article  CAS  Google Scholar 

  24. Castilho, L. R., C. M. S. Polato, E. A. Baruque, G. L. Sant’Anna Jr., and D. M. G. Freire (2000) Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem. Eng. J. 4: 239–247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garlapati, V.K., Banerjee, R. Optimization of lipase production using differential evolution. Biotechnol Bioproc E 15, 254–260 (2010). https://doi.org/10.1007/s12257-009-0163-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0163-3

Keywords

Navigation