Skip to main content
Log in

Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline proteinase (SAPB)

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The newly Tunisian soil-isolated bacterium, producing the alkaline proteinase termed SAPB that was already purified and characterized [1], was assigned as Bacillus pumilus CBS strain on the basis of biochemical properties and 16S rRNA gene sequencing. The maximum protease activity recorded after 24 h of incubation in an optimized medium at 37°C was 6,500 U/mL in shaking flask culture and 25,000 U/mL in fermentor. SAPB showed excellent stability and compatibility in laundry detergent retaining more than 98% of its initial activity after pre-incubation for 1 h at 40°C with Det, followed by OMO (97%), Dinol (94%), and Dixan (93%). Examination of various stained cloth pieces exhibited a remarkable efficiency in the removal of blood and chocolate stains. More interestingly, SAPB demonstrated powerful dehairing capabilities of hair removal from skin with minimal damage on the collagen and a nearly complete feather-degradation. Likewise, Bacillus pumilus CBS effectively degraded feather-meal (98.5%), chicken feather (92%), goat hair (80%), and bovine hair (68%) whereas sheep wool under went less degradation. Keratin-degradation resulted in sulfhdryl group formation (0.95∼3.91 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90: 1291–1305.

    Article  CAS  Google Scholar 

  2. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597–635.

    CAS  Google Scholar 

  3. Kirk, O., T. V. Borchert, and C. C. Fuglsang (2002) Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345–351.

    Article  CAS  Google Scholar 

  4. Gupta, R., Q. K. Beg, and P. Lorenz (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15–32.

    Article  CAS  Google Scholar 

  5. Beg, Q. and R. Gupta (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enz. Microb. Technol. 32: 294–304.

    Article  CAS  Google Scholar 

  6. Maurer, K. H. (2004) Detergent proteases. Curr. Opin. Biotechnol. 15: 330–334.

    Article  CAS  Google Scholar 

  7. Coulombe, P. A. and M. B. Omary (2002) ’Hard’ and ’soft’ principles defining the structure, function, and regulation of keratin intermediate filaments. Curr. Opin. Cell. Biol. 14: 110–122

    Article  CAS  Google Scholar 

  8. Hess, J. F. and P. G. FitzGerald (2007) Treatment of keratin intermediate filaments with sulfur mustard analogs. Biochem. Biophys. Res. Commun. 359: 616–621.

    Article  CAS  Google Scholar 

  9. Papadopoulos, M. C., A. R. El Boushy, A. E. Roodbeen, and E. H. Ketelaars (1986) Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Anim. Feed Sci. Technol. 14: 279–290.

    Article  Google Scholar 

  10. Thanikaivelan, P., J. R. Rao, B. U. Nair, and T. Ramasami (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol. 22: 181–188.

    Article  CAS  Google Scholar 

  11. Son, H. J., H. C. Park, H. S. Kim, and C. Y. Lee (2008) Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol. Lett. 30: 461–465.

    Article  CAS  Google Scholar 

  12. Pillai, P. and G. Archana (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl. Microbiol. Biotechnol. 78: 643–650.

    Article  CAS  Google Scholar 

  13. Cao, L., H. Tan, Y. Liu, X. Xue, and S. Zhou (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett. Appl. Microbiol. 46: 389–394.

    Article  CAS  Google Scholar 

  14. Lee, Y. J., J. H. Kim, H. K. Kim, and J. S. Lee (2004) Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol. Bioprocess Eng. 9: 17–22.

    Article  CAS  Google Scholar 

  15. Gurtler, V. and V. A. Stanisich (1996) New approches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142: 3–16.

    Article  Google Scholar 

  16. Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular cloning: A laboratory Manual. 2nd ed., pp. 23–38. Cold Spring Harbor Laboratory Press, NY, USA.

    Google Scholar 

  17. Kim, S. J., M. K. Cha, E. Oh, S. M. Kang, J. S. So, and Y. J. Kwon (2005) Use of protease produced by Bacillus sp. SJ-121 for improvement of dyeing quality in wool and silk. Biotechnol. Bioprocess Eng. 10: 186–191.

    Article  CAS  Google Scholar 

  18. Lin, Y. C. (1969) Action of proteolytic enzymes on N,N-dimethyl proteins. Basis for a microassay for proteolytic enzymes. J. Biol. Chem. 244: 789–793.

    CAS  Google Scholar 

  19. Letourneau, F., V. Soussotte, P. Bressollier, P. Branland, and B. Verneuil (1998) Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Lett. Appl. Microbiol. 26: 77–80.

    Article  CAS  Google Scholar 

  20. Sellami-Kamoun, A., A. Haddar, N. E. Ali, B. Ghorbel- Frikha, S. Kanoun, and M. Nasri (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299–306.

    Article  CAS  Google Scholar 

  21. Banik, R. M. and M. Prakash (2004) Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res. 159: 135–140.

    Article  CAS  Google Scholar 

  22. Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.

    Article  CAS  Google Scholar 

  23. Hadj-Ali, N. E., R. Agrebi, B. Ghorbel-Frikha, A. Sellami-Kamoun, S. Kanoun, and M. Nasri (2007) Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enz. Microb. Technol. 40: 515–523.

    Article  Google Scholar 

  24. Venugopal, M. and A. V. Saramma (2006) Characterization of alkaline protease from Vibrio fluvialis strain VM10 isolated from a mangrove sediment sample and its application as a laundry detergent additive. Proc. Biochem. 41: 1239–1243.

    Article  CAS  Google Scholar 

  25. Singh, J., N. Batra, and R. C. Sobti (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Proc. Biochem. 36: 781–785.

    Article  CAS  Google Scholar 

  26. Anwar, A. and M. Saleemuddin (1997) Alkaline-pHacting digestive enzymes of Polyphagous brevis and its characterization as a laundry detergent additive. Proc. Biochem. 35: 213–216.

    Google Scholar 

  27. Banerjee, U., R. Sani, W. Azmi, and R. K. Sani (1999) Thermostable alkaline protease from Bacillus brevis and its characterisation as a laundry detergent additive. Proc. Biochem. 35: 213–219.

    Article  CAS  Google Scholar 

  28. Bressollier, P., F. Letourneau, M. Urdaci, and B. Verneuil (1999) Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570–2576.

    CAS  Google Scholar 

  29. El-Refai, H. A., M. A. AbdelNaby, A. Gaballa, M. H. El-Araby, and A. F. Abdel Fattah (2005) Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Proc. Biochem. 40: 2325–2332.

    Article  CAS  Google Scholar 

  30. Williams, C. M., C. S. Richter, J. M. Mackenzie, and J. C. Shih (1990) Isolation, Identification, and Characterization of a Feather-Degrading Bacterium. Appl. Environ. Microbial. 56: 1509–1515.

    CAS  Google Scholar 

  31. Dayanandan, A., J. Kanagaraj, L. Sounderraj, R. Govindaraju, and G. S. Rajkumar (2003) Application of an alkaline protease in leather processing: an ecofriendly approach. J. Clean. Prod. 11: 533–536.

    Article  Google Scholar 

  32. Grazziotin, A., F. A. Pimentel, S. Sangali, E. V. de Jong, and A. Brandelli (2007) Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. kr2. Biores. Technol. 98: 3172–3175.

    Article  CAS  Google Scholar 

  33. Kumar, A. G., S. Swarnalatha, S. Gayathri, N. Nagesh, and G. Sekaran (2008) Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J. Appl. Microbiol. 104: 411–419.

    CAS  Google Scholar 

  34. Wang, H. Y., D. M. Liu, Y. Liu, C. F. Cheng, Q. Y. Ma, Q. Huang, and Y. Z. Zhang (2007) Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett. Appl. Microbiol. 44: 1–6.

    Article  CAS  Google Scholar 

  35. Huang, Q., Y. Peng, X. Li, H. Wang, and Y. Zhang (2003) Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Bejar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaouadi, B., Ellouz-Chaabouni, S., Ali, M.B. et al. Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline proteinase (SAPB). Biotechnol Bioproc E 14, 503–512 (2009). https://doi.org/10.1007/s12257-008-0244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0244-8

Keywords

Navigation