Skip to main content
Log in

Optimization, production, and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2009

Abstract

An endosymbiont Halobacterium salinarum MMD047, which could produce high yields of amylase, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in minimal medium supplemented with 1% sucrose. The enzyme was found to be produced constitutively even in the absence of starch. The optimum temperature and pH for the enzyme production was 40°C and 8.0, respectively. The enzyme exhibited maximum activity in pH range of 6∼10 with an optimum pH of 9.0. The enzyme was stable at 40°C and the enzyme activity decreased dramatically above 50°C. Based on the present findings, the enzyme was characterized as relatively heat sensitive and alkalophilic amylase which can be developed for extensive industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Windish, W. W. and N. S. Mhatre (1965) Microbial amylases. Adv. Appl. Microbiol. 7: 273–304.

    Article  CAS  Google Scholar 

  2. Burhan, A., U. Nisa, C. Gokhan, C. Omer, A. Ashabil, and G. Osman (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem. 38: 1397–1403.

    Article  CAS  Google Scholar 

  3. Ali, M. B., M. Mezghani, and S. Bejar (1999) A thermostable α-amylase producing maltohexaose from a new isolated Bacillus sp. US100: study of activity and molecular cloning of the corresponding gene. Enzyme Microb. Technol. 24: 584–589.

    Article  Google Scholar 

  4. Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan (2000) Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135–152.

    Article  CAS  Google Scholar 

  5. Chandrasekaran, M. (1997) Industrial enzymes from marine microorganisms: the Indian scenario. J. Mar. Biotechnol. 5: 86–89.

    CAS  Google Scholar 

  6. Ramachandran, S., A. K. Patel, K. M. Nampoothiri, F. Francis, V. Nagy, G. Szakacs, and A. Pandey (2004) Coconut oil cake — A potential raw material for the production of α-amylase. Bioresour. Technol. 93: 169–174.

    Article  CAS  Google Scholar 

  7. Babu, K. R. and T. Satyanarayana (1993) Extracellular calcium-inhibited alpha-amylase of Bacillus coagulans B 49. Enzyme Microb. Technol. 15: 1066–1069.

    Article  CAS  Google Scholar 

  8. Mc Tigue, M. A., C. T. Kelly, E. M. Doyle, and W. M. Fogarty (1995) The alkaline amylase of the alkalophilic Bacillus sp. IMD 370. Enzyme Microb. Technol. 17: 570–573.

    Article  CAS  Google Scholar 

  9. Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan (2003) Microbial α-amylases: a biotechno logical perspective. Process Biochem. 38: 1599–1616.

    Article  CAS  Google Scholar 

  10. Wanderley, K. J., F. A. G. Torres, L. M. P. Moraes, and C. J. Ulhoa (2004) Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett. 231: 165–169.

    Article  CAS  Google Scholar 

  11. Cappucino, J. G. and N. Sherman (2004) Microbiology: A Laboratory Manual. pp. 491. Pearson Education, Singapore.

    Google Scholar 

  12. Collins, C. H., P. M. Lyne, and J. M. Grange (1989) Microbiological Methods. Butterworths, London, UK.

    Google Scholar 

  13. Enticknap, J. J., M. Kelly, O. Peraud, and R. T. Hill (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl. Environ. Microbiol. 72: 3724–3732.

    Article  CAS  Google Scholar 

  14. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    CAS  Google Scholar 

  15. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  16. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  17. Bernfeld, P. (1955) Amylases, α and β. Methods Enzymol. 1: 149–158.

    Article  CAS  Google Scholar 

  18. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  19. George, V. and A. M. Diwan (1993) Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by counter migration of Coomasie brilliant blue R-250. Anal. Bacteriol. 4: 662–666.

    Google Scholar 

  20. Anto, H., U. Trivedi, and K. Patel (2006) Alpha amylase production by Bacillus cereus MTCC 1305 using solidstate fermentation. Food Technol. Biotechnol. 44: 241–245.

    CAS  Google Scholar 

  21. Asgher, M., M. J. Asad, S. U. Rahman, and R. L. Legge (2007) A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950–955.

    Article  CAS  Google Scholar 

  22. Bajpai, P. and P. K. Bajpai (1989) High-temperature alkaline α-amylase from Bacillus licheniformis TCRDC-B13. Biotechnol. Bioeng. 33: 72–78.

    Article  CAS  Google Scholar 

  23. Meers, J. L. (1972) The regulation of α-amylase production in Bacillus licheniformis. Antonie Van Leeuwenhoek 38: 585–590.

    Article  CAS  Google Scholar 

  24. Nyiri, L. (1971) The preparation of enzyme by fermentation. Int. J. Chem. Eng. 11: 447–457.

    Google Scholar 

  25. Dettori-Campus, B. G., F. G. Priest, and J. R. Stark (1992) Hydrolysis of starch granules by the amylase from Bacillus stearothermophilus NCA 26. Process Biochem. 27: 17–21.

    Article  CAS  Google Scholar 

  26. Nguyen, Q. D., J. M. Rezessy-Szabo, and A. Hoschke (2000) Optimisation of composition of media for the production of amylolytic enzymes by Thermomyces lanuginosus ATCC 34626. Food Technol. Biotechnol. 38: 229–234.

    CAS  Google Scholar 

  27. Pedersen, H. and J. Nielsen (2000) The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 53: 278–281.

    Article  CAS  Google Scholar 

  28. Fogarty, W. (1983) Microbial Enzymes and Biotechnology. Applied Science Publishers, London and New York.

    Google Scholar 

  29. Chandra, A. K., S. Medda, and A. K. Bhadra (1980) Production of extracellular thermostable α-amylase by Bacillus licheniformis. J. Ferment. Technol. 58: 1–10.

    CAS  Google Scholar 

  30. Saito, N. and K. Yamamoto (1975) Regulatory factors affecting α-amylase production in Bacillus licheniformis. J. Bacteriol. 121: 848–856.

    CAS  Google Scholar 

  31. Lin, L. L., C. C. Chyau, and W. H. Hsu (1998) Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem. 28: 61–68.

    CAS  Google Scholar 

  32. Zhang, J. W. and R. Y. Zeng (2008) Purification and characterization of a cold-adapted α-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Mar. Biotechnol. 10: 75–82.

    Article  CAS  Google Scholar 

  33. Grant, W. D. and K. Horikoshi (1989) Microbiology of extreme environments and its potential for biotechnology. pp. 346–366. In: M. S. Da Costa, J. C. Duarte, and R. A. D. Williams (eds.). Alkaliphiles. Elsevier Applied Science, London, UK.

    Google Scholar 

  34. Nakai, R., T. Saito, and K. Okamoto (1986) Manufacture of alkaline amylase with Streptomyces. Japanese Kokai Koho Patent 86,209.

    Google Scholar 

  35. Ozaki, A. and A. Tanaka (1990) Heat stable alkaline amylase from Bacillus. Japanese Kokai Koho Patent 9049,584.

    Google Scholar 

  36. Wilson, J. J. and W. M. Ingledew (1982) Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl. Environ. Microbiol. 44: 301–307.

    CAS  Google Scholar 

  37. Cordeiro, C. A. M., M. L. L. Martins, and A. B. Luciano (2002) Production and properties of α-amylase from thermophilic Bacillus sp. Braz. J. Microbiol. 33: 57–61.

    CAS  Google Scholar 

  38. Igarashi, K., Y. Hatada, H. Hagihara, K. Saeki, M. Takaiwa, T. Uemura, K. Ara, K. Ozaki, S. Kawai, T. Kobayashi, and S. Ito (1998) Enzymatic properties of a novel liquefying alpha-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol. 64: 3282–3289.

    CAS  Google Scholar 

  39. Sarikaya, E. and V. Gurgun (2000) Increase of the α-amylase yield by some Bacillus strains. Turk. J. Biol. 24: 299–308.

    CAS  Google Scholar 

  40. Amoozegar, M. A., F. Malekzadeh, and K. A. Malik (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J. Microbiol. Methods 52: 353–359.

    Article  CAS  Google Scholar 

  41. Coronado, M. J., C. Vargas, J. Hofemeister, A. Ventosa, and J. J. Nieto (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol. Lett. 183: 67–71.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Selvin.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s12257-009-1003-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanmughapriya, S., Seghal Kiran, G., Selvin, J. et al. Optimization, production, and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol Bioproc E 14, 67–75 (2009). https://doi.org/10.1007/s12257-008-0060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0060-1

Keywords

Navigation