Skip to main content
Log in

Identification of drug responsible glycogene signature in liver carcinoma from meta-analysis using RNA-seq data

  • Research
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycans have attracted much attention in cancer therapeutic strategies, and cell surface proteins and lipids with glycans are known to be altered during the carcinogenic process. However, our understanding of how the glycogenes profile responds to drug stimulation remains incomplete. In this study, we search public databases for Sequence Read Archive data on drug-treated liver cancer cells, with the aim to comprehensively analyze the drug responses of glycogenes via bioinformatic meta-analysis. The study comprised 86 datasets, encompassing eight distinct liver cancer cell lines and 13 different drugs. Differentially expressed genes were quantified, and 399 glycogenes were identified. The glycogenes signature was then analyzed using bioinformatics methodologies. In the Protein-protein interaction network analysis, we identified drug-responsive glycogenes such as Beta-1,4-Galactosyltransferase 1, GDP-Mannose 4,6-Dehydratase, UDP-Glucose Ceramide Glucosyltransferase, and Solute Carrier Family 2 Member 4 as key glycan biomarkers. In the enrichment analysis using the pathway list of glycogenes, the results also demonstrated that drug stimulation resulted in alterations to glycopathway-related genes involved in several processes, namely O-Mannosylation, POMGNT2 Type, Capping, Heparan Sulfate Sulfation, and Glucuronidation pathways. These genes and pathways commonly exhibit variable expression across multiple liver cancer cells in response to the same drug, making them potential targets for new cancer therapies. In addition to their primary roles, drugs may also participate in the regulation of glycans. The insights from this study could pave the way for the development of liver cancer therapies that target the regulation of gene profiles involved in the biosynthesis of glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are publicly available in the original repositories. The processed data are available on figshare [19, 21].

References

  1. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A., Bray, F.: Cancer statistics for the year 2020: An overview. Int. J. Cancer. 149, 778–789 (2021). https://doi.org/10.1002/IJC.33588

    Article  CAS  Google Scholar 

  2. Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation — potential for therapeutics and diagnostics. Nat. Reviews Drug Discovery 2005. 4, 6 (2005). https://doi.org/10.1038/nrd1751

    Article  CAS  Google Scholar 

  3. Hakomori, S.: Tumor-Associated Carbohydrate Antigens. 2, 103–126 (2003). https://doi.org/10.1146/ANNUREV.IY.02.040184.000535

  4. Christiansen, M.N., Chik, J., Lee, L., Anugraham, M., Abrahams, J.L., Packer, N.H.: Cell surface protein glycosylation in cancer. Proteomics. 14, 525–546 (2014). https://doi.org/10.1002/PMIC.201300387

    Article  CAS  PubMed  Google Scholar 

  5. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H.: Essentials of glycobiology. Cold Spring Harbor (NY). 823 (2022). https://doi.org/10.1101/9781621824213

  6. Hu, M., Lan, Y., Lu, A., Ma, X., Zhang, L.: Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. Prog Mol. Biol. Transl Sci. 162, 1–24 (2019). https://doi.org/10.1016/BS.PMBTS.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Pinho, S.S., Reis, C.A.: Glycosylation in cancer: Mechanisms and clinical implications. Nat. Reviews Cancer 2015. 15, 9 (2015). https://doi.org/10.1038/nrc3982

    Article  CAS  Google Scholar 

  8. Furukawa, K., Ohmi, Y., Ohkawa, Y., Bhuiyan, R.H., Zhang, P., Tajima, O., Hashimoto, N., Hamamura, K., Furukawa, K.: New era of research on cancer-associated glycosphingolipids. Cancer Sci. 110, 1544–1551 (2019). https://doi.org/10.1111/CAS.14005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steentoft, C., Migliorini, D., King, T.R., Mandel, U., June, C.H., Posey, A.D.: Glycan-directed CAR-T cells. Glycobiology. 28, 656–669 (2018). https://doi.org/10.1093/GLYCOB/CWY008

    Article  CAS  PubMed  Google Scholar 

  10. Mereiter, S., Balmaña, M., Campos, D., Gomes, J., Reis, C.A.: Glycosylation in the era of Cancer-targeted therapy: Where are we heading? Cancer Cell. 36, 6–16 (2019). https://doi.org/10.1016/j.ccell.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  11. Lokeshwar, V.B., Mirza, S., Jordan, A.: Targeting Hyaluronic Acid Family for Cancer Chemoprevention and Therapy. Adv. Cancer Res. 123, 35–65 (2014). https://doi.org/10.1016/B978-0-12-800092-2.00002-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schultz, M.J., Swindall, A.F., Bellis, S.L.: Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 31, 501–518 (2012). https://doi.org/10.1007/S10555-012-9359-7/FIGURES/9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pearce, O.M.T., Läubli, H.: Sialic acids in cancer biology and immunity. Glycobiology. 26, 111–128 (2016). https://doi.org/10.1093/GLYCOB/CWV097

    Article  CAS  PubMed  Google Scholar 

  14. Angata, K., Sawaki, H., Tsujikawa, S., Ocho, M., Togayachi, A., Narimatsu, H.: Glycogene expression profiling of hepatic cells by RNA-Seq analysis for glyco-biomarker identification. Front. Oncol. 10, 1224 (2020). https://doi.org/10.3389/FONC.2020.01224/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martinez-Morales, P., Cruz, I.M., Roa-De la Cruz, L., Maycotte, P., Salinas, J.S.R., Zamora, V.J.V., Quiroz, C.T.G., Montiel-Jarquin, A.J., Vallejo-Ruiz, V.: Hallmarks of glycogene expression and glycosylation pathways in squamous and adenocarcinoma cervical cancer. PeerJ. 9, e12081 (2021). https://doi.org/10.7717/PEERJ.12081/SUPP-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bono, H.: All of gene expression (AOE): An integrated index for public gene expression databases. PLoS One. 15, e0227076 (2020). https://doi.org/10.1371/JOURNAL.PONE.0227076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. dogTK/meta-script: (2023). https://github.com/dogTK/meta-script. Accessed 10

  18. Yu, H., Kohki, Y., Ryuichiro, Y., Yusuke, K., Ryoko, K., Yasunari, M., Kaito, I., Yuto, U., Haruka, H., Yasumizu, Y.: yyoshiaki/ikra: ikra v2.0. (2021). https://doi.org/10.5281/ZENODO.4718200

  19. Whole Gene Matrix: Drug-Induced Liver Cancer Cell RNA-seq Data of All Genes. https://figshare.com/articles/dataset/Whole_Gene_Matrix_Drug-Induced_Liver_Cancer_Cell_RNA-seq_Data_of_All_Genes/23573871. Accessed 1 Jul 2023

  20. Groth, T., Diehl, A.D., Gunawan, R., Neelamegham, S.: GlycoEnzOnto: A GlycoEnzyme pathway and molecular function ontology. Bioinformatics. 38, 5413–5420 (2022). https://doi.org/10.1093/BIOINFORMATICS/BTAC704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. GlycoGenes, M.: Drug-Induced Liver Cancer Cell RNA-seq Data of Glycogenes. https://figshare.com/articles/dataset/GlycoGenes_Matrix_Drug-Induced_Liver_Cancer_Cell_RNA-seq_Data_of_Glycogenes/23573910. Accessed 1 Jul 2023

  22. Ono, Y., Bono, H.: Multi-Omic Meta-Analysis of Transcriptomes and the Bibliome Uncovers Novel Hypoxia-Inducible Genes. Biomedicines 2021, Vol 9, Page 582 9:582. (2021). https://doi.org/10.3390/BIOMEDICINES9050582

  23. Suzuki, T., Ono, Y., Bono, H.: Comparison of oxidative and hypoxic stress responsive genes from Meta-Analysis of Public Transcriptomes. Biomedicines. 2021(9), Page1830–91830 (2021). https://doi.org/10.3390/BIOMEDICINES9121830

    Article  Google Scholar 

  24. Yu, G., Wang, L.G., Han, Y., He, Q.Y.: ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16, 284–287 (2012). https://doi.org/10.1089/OMI.2011.0118/ASSET.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Draw Venn Diagram: https://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 18 Mar 2023

  26. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Chanda, S.K.: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10 (2019). https://doi.org/10.1038/S41467-019-09234-6

  27. Metadata of RNA-Seq: Data Samples from Drug-Stimulated Liver Cancer Cells. https://figshare.com/articles/dataset/Metadata_of_RNA-Seq_Data_Samples_from_Drug-Stimulated_Liver_Cancer_Cells/23573913. Accessed 1 Jul 2023

  28. Ma, L., Dong, P., Liu, L., Gao, Q., Duan, M., Zhang, S., Chen, S., Xue, R., Wang, X.: Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the notch signaling pathway. Biochem. Biophys. Res. Commun. 473, 503–510 (2016). https://doi.org/10.1016/J.BBRC.2016.03.062

    Article  CAS  PubMed  Google Scholar 

  29. Huang, X.T., Chen, L.H., Huang, C.S., Li, J.H., Cai, J.P., Chen, W., Yin, X.Y.: Establishment of a Nomogram by integrating molecular markers and Tumor-Node-Metastasis Staging System for Predicting the prognosis of Hepatocellular Carcinoma. Dig. Surg. 36, 426–432 (2019). https://doi.org/10.1159/000494219

    Article  CAS  PubMed  Google Scholar 

  30. Sukowati, C.H.C., Anfuso, B., Fiore, E., Ie, S.I., Raseni, A., Vascotto, F., Avellini, C., Mazzolini, G., Tiribelli, C.: Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis. Sci. Rep. 2019. 9(1 9), 1–11 (2019). https://doi.org/10.1038/s41598-019-40436-6

    Article  CAS  Google Scholar 

  31. Ritorto, M.S., Rhode, H., Vogel, A., Borlak, J.: Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC. Biol. Chem. 397, 1147–1162 (2016). https://doi.org/10.1515/HSZ-2016-0133.

    Article  CAS  PubMed  Google Scholar 

  32. Wu, Q., Pi, L., Le Trinh, T., Zuo, C., Xia, M., Jiao, Y., Hou, Z., Jo, S., Puszyk, W., Pham, K., Nelson, D.R., Robertson, K., Ostrov, D., Rameshwar, P., Xia, C.Q., Liu, C.: A Novel Vaccine Targeting Glypican-3 as a treatment for Hepatocellular Carcinoma. Mol. Ther. 25, 2299–2308 (2017). https://doi.org/10.1016/j.ymthe.2017.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Z., He, L., Yang, L., Fang, X., Peng, L.: Potential role of NEU1 in Hepatocellular Carcinoma: A study based on Comprehensive Bioinformatical Analysis. Front. Mol. Biosci. 8, 651525 (2021). https://doi.org/10.3389/FMOLB.2021.651525/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jennemann, R., Federico, G., Mathow, D., Rabionet, M., Rampoldi, F., Popovic, Z.V., Volz, M., Hielscher, T., Sandhoff, R., Gröne, H.-J., Jennemann, R., Federico, G., Mathow, D., Rabionet, M., Rampoldi, F., Popovic, Z.V., Volz, M., Hielscher, T., Sandhoff, R., Gröne, H.-J.: Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget. 8, 109201–109216 (2017). https://doi.org/10.18632/ONCOTARGET.22648

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stefanovic, M., Tutusaus, A., Martinez-Nieto, G.A., Bárcena, C., de Gregorio, E., Moutinho, C., Barbero-Camps, E., Villanueva, A., Colell, A., Marí, M., García-Ruiz, C., Fernandez-Checa, J.C., Morales, A., Stefanovic, M., Tutusaus, A., Martinez-Nieto, G.A., Bárcena, C., de Gregorio, E., Moutinho, C., Barbero-Camps, E., Villanueva, A., Colell, A., Marí, M., García-Ruiz, C., Fernandez-Checa, J.C., Morales, A.: Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 7, 8253–8267 (2016). https://doi.org/10.18632/ONCOTARGET.6982

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bydlinski, N., Maresch, D., Schmieder, V., Klanert, G., Strasser, R., Borth, N.: The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster ovary cells. J. Biotechnol. 282, 101–110 (2018). https://doi.org/10.1016/J.JBIOTEC.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  37. Imai-Nishiya, H., Mori, K., Inoue, M., Wakitani, M., Iida, S., Shitara, K., Satoh, M.: Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: A new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol. 7, 1–13 (2007). https://doi.org/10.1186/1472-6750-7-84/FIGURES/5

    Article  Google Scholar 

  38. Wei, X., Zhang, K., Qin, H., Zhu, J., Qin, Q., Yu, Y., Wang, H.: GMDS knockdown impairs cell proliferation and survival in human lung adenocarcinoma. BMC Cancer. 18, 1–14 (2018). https://doi.org/10.1186/S12885-018-4524-1/FIGURES/7

    Article  Google Scholar 

  39. Huang, Y., Li, S.R., Gao, Y.J., Zhu, Y.H., Zhang, X.F.: Novel gene signatures promote epithelial-mesenchymal transition (EMT) in glucose deprivation-based Microenvironment to predict recurrence-free survival in Hepatocellular Carcinoma. J. Oncol. 2023 (2023). https://doi.org/10.1155/2023/6114976

  40. Aruleba, R.T., Adekiya, T.A., Oyinloye, B.E., Kappo, A.P.: Structural studies of predicted Ligand Binding Sites and Molecular Docking Analysis of Slc2a4 as a therapeutic target for the treatment of Cancer. Int. J. Mol. Sci. 2018. 19, 386 (2018). https://doi.org/10.3390/IJMS19020386

    Article  Google Scholar 

  41. Liu, H.Y., Dong, T.X., Li, Z.Z., Li, T.T., Jiang, J., Zhu, M.W., An, T.T., Chen, Y.D., Yang, X.H.: Homoharringtonine inhibits the progression of hepatocellular carcinoma by suppressing the PI3K/AKT/GSK3β/Slug signaling pathway. Neoplasma. 68, 924–937 (2021). https://doi.org/10.4149/NEO_2021_210113N57

    Article  CAS  PubMed  Google Scholar 

  42. Wang, H., Wang, R., Huang, D., Li, S., Gao, B., Kang, Z., Tang, B., Xie, J., Yan, F., Liang, R., Li, H., Yan, J.: Homoharringtonine exerts Anti-tumor effects in Hepatocellular Carcinoma through activation of the Hippo Pathway. Front. Pharmacol. 12, 51 (2021). https://doi.org/10.3389/FPHAR.2021.592071/BIBTEX

    Article  Google Scholar 

  43. Sugatani, J., Osabe, M., Kurosawa, M., Kitamura, N., Ikari, A., Miwa, M.: Induction of UGT1A1 and CYP2B6 by an antimitogenic factor in HepG2 cells is mediated through suppression of cyclin-dependent kinase 2 activity: Cell cycle-dependent expression. Drug Metab. Dispos. 38, 177–186 (2010). https://doi.org/10.1124/DMD.109.029785

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y., Xue, M., Cao, D., Qin, L., Wang, Y., Miao, Z., Wang, P., Hu, X., Shen, J., Xiong, B.: Multi-omics characterization of WNT pathway reactivation to ameliorate BET inhibitor resistance in liver cancer cells. Genomics. 113, 1057–1069 (2021). https://doi.org/10.1016/J.YGENO.2021.02.017

    Article  CAS  PubMed  Google Scholar 

  45. Hu, J., Wang, Y., Li, Y., Xu, L., Cao, D., Song, S.S., Damaneh, M.S., Wang, X., Meng, T., Chen, Y.L., Shen, J., Miao, Z., Xiong, B.: Discovery of a series of dihydroquinoxalin-2(1H)-ones as selective BET inhibitors from a dual PLK1-BRD4 inhibitor. Eur. J. Med. Chem. 137, 176–195 (2017). https://doi.org/10.1016/J.EJMECH.2017.05.049

    Article  CAS  PubMed  Google Scholar 

  46. Damaneh, M.S., Hu, J.P., Huan, X.J., Song, S.S., Tian, C.Q., Chen, D.Q., Meng, T., Chen, Y.L., Shen, J.K., Xiong, B., Miao, Z.H., Wang, Y.Q.: A new BET inhibitor, 171, inhibits tumor growth through cell proliferation inhibition more than apoptosis induction. Invest. New. Drugs. 38, 700–713 (2020). https://doi.org/10.1007/S10637-019-00818-Z/METRICS

    Article  CAS  PubMed  Google Scholar 

  47. Tan, J., Song, M., Zhou, M., Hu, Y.: Antibiotic tigecycline enhances cisplatin activity against human hepatocellular carcinoma through inducing mitochondrial dysfunction and oxidative damage. Biochem. Biophys. Res. Commun. 483, 17–23 (2017). https://doi.org/10.1016/J.BBRC.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  48. Kuo, H.-H., Lin, R.-J., Hung, J.-T., Hsieh, C.-B., Hung, T.-H., Lo, F.-Y., Ho, M.-Y., Yeh, C.-T., Huang, Y.-L., Yu, J., Yu, A.L.: High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma. Sci. Rep. 2017. 7(1 7), 1–13 (2017). https://doi.org/10.1038/s41598-017-11136-w

    Article  CAS  Google Scholar 

  49. Jin, X., Wang, J., Zou, S., Xu, R., Cao, J., Zhang, Y., Guo, J., Wen, X., Deng, S., Zheng, Y., Zhu, Y., Wang, F., Xu, Z.: Cinobufagin triggers defects in spindle formation and Cap-Dependent translation in Liver Cancer cells by inhibiting the AURKA-mTOR-eIF4E Axis. (2020). 48:651–678. https://doi.org/10.1142/S0192415X20500330

  50. Jin, X., Wang, J., Zou, S., Xu, R., Cao, J., Zhang, Y., Guo, J., Wen, X., Deng, S., Zheng, Y., Zhu, Y., Wang, F., Xu, Z.: Cinobufagin triggers defects in spindle formation and Cap-Dependent translation in Liver Cancer cells by inhibiting the AURKA-mTOR-eIF4E Axis. Am. J. Chin. Med. (Gard City N Y). 48, 651–678 (2020). https://doi.org/10.1142/S0192415X20500330

    Article  CAS  Google Scholar 

  51. Yang, A., Wu, Q., Wang, A., Chen, Q., Yang, J., Tao, Y., Sun, Y., Zhang, J.: Integrated transcriptomics and metabolomics analyses to investigate the anticancer mechanisms of cinobufagin against liver cancer through interfering with lipid, amino acid, carbohydrate, and nucleotide metabolism. Bioorg. Chem. 130, 106229 (2023). https://doi.org/10.1016/J.BIOORG.2022.106229

    Article  CAS  PubMed  Google Scholar 

  52. Nie, H., Liu, X., Zhang, Y., Li, T., Zhan, C., Huo, W., He, A., Yao, Y., Jin, Y., Qu, Y., Sun, X.L., Li, Y.: Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation. Scientific Reports 2015 5:1 5:1–11. (2015). https://doi.org/10.1038/srep16007

  53. Kang, X., Wang, N., Pei, C., Sun, L., Sun, R., Chen, J., Liu, Y.: Glycan-related gene expression signatures in human metastatic hepatocellular carcinoma cells. Exp. Ther. Med. 3, 415–422 (2012). https://doi.org/10.3892/ETM.2011.430/HTML

    Article  CAS  PubMed  Google Scholar 

  54. Borsig, L., Imbach, T., Höchli, M., Berger, E.G.: α1,3Fucosyltransferase VI is expressed in HepG2 cells and codistributed with β1,4galactosyltransferase I in the golgi apparatus and monensin-induced swollen vesicles. Glycobiology. 9, 1273–1280 (1999). https://doi.org/10.1093/GLYCOB/9.11.1273

    Article  CAS  PubMed  Google Scholar 

  55. Imae, R., Kuwabara, N., Manya, H., Tanaka, T., Tsuyuguchi, M., Mizuno, M., Endo, T., Kato, R.: The structure of POMGNT2 provides new insights into the mechanism to determine the functional O-mannosylation site on α-dystroglycan. Genes Cells. 26, 485–494 (2021). https://doi.org/10.1111/GTC.12853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carvalho, S., Oliveira, T., Bartels, M.F., Miyoshi, E., Pierce, M., Taniguchi, N., Carneiro, F., Seruca, R., Reis, C.A., Strahl, S., Pinho, S.S., Carvalho, S., Oliveira, T., Bartels, M.F., Miyoshi, E., Pierce, M., Taniguchi, N., Carneiro, F., Seruca, R., Reis, C.A., Strahl, S., Pinho, S.S.: O -mannosylation and N -glycosylation: Two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer. Oncotarget. 7, 65231–65246 (2016). https://doi.org/10.18632/ONCOTARGET.11245

    Article  PubMed  PubMed Central  Google Scholar 

  57. Miller, M.R., Ma, D., Schappet, J., Breheny, P., Mott, S.L., Bannick, N., Askeland, E., Brown, J., Henry, M.D.: Downregulation of dystroglycan glycosyltransferases LARGE2 and ISPD associate with increased mortality in clear cell renal cell carcinoma. Mol. Cancer. 14, 1–12 (2015). https://doi.org/10.1186/S12943-015-0416-Z/FIGURES/8

    Article  CAS  Google Scholar 

  58. Burchell, J., Poulsom, R., Hanby, A., Whitehouse, C., Cooper, L., Clausen, H., Miles, D., Taylor-Papadimitriou, J.: An α2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology. 9, 1307–1311 (1999). https://doi.org/10.1093/GLYCOB/9.12.1307

    Article  CAS  PubMed  Google Scholar 

  59. Wu, X., Zhao, J., Ruan, Y., Sun, L., Xu, C., Jiang, H.: Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell. Death Disease 2018. 9, 11 (2018). https://doi.org/10.1038/s41419-018-1101-0

    Article  CAS  Google Scholar 

  60. Gerardo-Ramírez, M., Lazzarini-Lechuga, R., Hernández-Rizo, S., Jiménez-Salazar, J.E., Simoni-Nieves, A., García-Ruiz, C., Fernández-Checa, J.C., Marquardt, J.U., Coulouarn, C., Gutiérrez-Ruiz, M.C., Pérez-Aguilar, B., Gomez-Quiroz, L.E.: GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion. Biochimica et Biophysica Acta (BBA) -. Mol. Basis Disease. 1865, 1540–1554 (2019). https://doi.org/10.1016/J.BBADIS.2019.03.003

    Article  Google Scholar 

  61. Sinha, M., Jang, Y.C., Oh, J., Khong, D., Wu, E.Y., Manohar, R., Miller, C., Regalado, S.G., Loffredo, F.S., Pancoast, J.R., Hirshman, M.F., Lebowitz, J., Shadrach, J.L., Cerletti, M., Kim, M.J., Serwold, T., Goodyear, L.J., Rosner, B., Lee, R.T., Wagers, A.J.: Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Sci. (1979). 344, 649–652 (2014). https://doi.org/10.1126/SCIENCE.1251152/SUPPL_FILE/SINHA.SM.PDF

    Article  CAS  Google Scholar 

  62. Song, K., Li, Q., Jiang, Z.Z., Guo, C.W., Li, P.: Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1, a novel epithelial-mesenchymal transition inducer in pancreatic cancer. http://dx.doi.org/104161/cbt1251595712:388–398. (2011). https://doi.org/10.4161/CBT.12.5.15957

  63. Kumar, A.V., Gassar, E.S., Spillmann, D., Stock, C., Sen, Y.P., Zhang, T., Van Kuppevelt, T.H., Hulsewig, C., Kozlowski, E.O., Pavao, M.S.G., Ibrahim, S.A., Poeter, M., Rescher, U., Kiesel, L., Koduru, S., Yip, G.W., Gotte, M.: HS3ST2 modulates breast cancer cell invasiveness via MAP kinase- and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression. Int. J. Cancer. 135, 2579–2592 (2014). https://doi.org/10.1002/IJC.28921

    Article  Google Scholar 

  64. Hellec, C., Delos, M., Carpentier, M., Denys, A., Allain, F.: The heparan sulfate 3-O-sulfotransferases (HS3ST) 2, 3B and 4 enhance proliferation and survival in breast cancer MDA-MB-231 cells. PLoS One. 13, e0194676 (2018). https://doi.org/10.1371/JOURNAL.PONE.0194676

    Article  PubMed  PubMed Central  Google Scholar 

  65. Denys, A., Allain, F.: The emerging roles of heparan sulfate 3-O-sulfotransferases in cancer. Front. Oncol. 9, 507 (2019). https://doi.org/10.3389/FONC.2019.00507/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  66. HMS LINCS Database - HMS LINCS Project: https://lincs.hms.harvard.edu/db/. Accessed 3 Jun 2023

Download references

Acknowledgements

I thank for his scientific input in the early phases of the present study.

Author information

Authors and Affiliations

Authors

Contributions

TK conceived the study, designed the experiments, selected public data sets, downloaded and processed the data, wrote data analysis scripts, interpreted all the data, prepared all figures, and wrote the main manuscript text. HH contributed to the conception and design of the study and provided manuscript review. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Tatsuya Koreeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that there are no conflicts.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koreeda, T., Honda, H. Identification of drug responsible glycogene signature in liver carcinoma from meta-analysis using RNA-seq data. Glycoconj J 41, 133–149 (2024). https://doi.org/10.1007/s10719-024-10153-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-024-10153-y

Keywords

Navigation