Skip to main content
Log in

Galectin-3 Accelerates the Progression of Oral Tongue Squamous Cell Carcinoma via a Wnt/β-catenin-Dependent Pathway

  • Research
  • Published:
Pathology & Oncology Research

Abstract

The purpose of this study was to elucidate the clinicopathological significance and mechanism of action of galectin-3 in oral tongue squamous cell carcinoma (OTSCC). Here, the expression of galectin-3 was quantified in OTSCC (n = 68) and paired OTSCC and normal surrounding tissues (n = 10) using immunohistochemical staining. Tca8113 OTSCC cells were transfected with a plasmid expressing galectin-3 cDNA or siRNA against galectin-3. Cell proliferation, migration and invasion were measured using the MTT assay, Matrigel-coated Transwell migration assay and wound healing assay. The effect of galectin-3 on the Wnt/β-catenin signaling pathway and epithelial mesenchymal transition (EMT) were investigated using a plasmid expressing the Wnt antagonist dickkopf 1 (DKK1) and Western blotting. Galectin-3 was expressed at significantly higher levels in OTSCC than the normal adjacent tissues; galectin-3 expression correlated strongly with pathological stage, pathological grade and lymph node invasion in OTSCC. Overexpression of galectin-3 promoted Tca8113 cell proliferation, migration and invasion, upregulated Wnt protein expression, activated β-catenin and induced the EMT; knockdown of galectin-3 had the opposite effects. Co-transfection of Tca8113 cells overexpressing galectin-3 with the Wnt antagonist DKK1 reduced the ability of galectin-3 to increase cell proliferation, migration and invasion, reduced upregulation of Wnt, inhibited β-catenin activation and abrogated the EMT, demonstrating that the Wnt/β-catenin signaling pathway mediated the effects of galectin-3. Galectin-3 plays an important role in the progression of OTSCC via activation of the Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cooper JS, Porter K, Mallin K et al (2009) National Cancer Database report on cancer of the head and neck: 10-year update. Head Neck 31:748–758

    Article  PubMed  Google Scholar 

  2. Chitapanarux I, Lorvidhaya V, Sittitrai P et al (2006) Oral cavity cancers at a young age: analysis of patient, tumor and treatment characteristics in Chiang Mai University Hospital. Oral Oncol 42:83–88

    Article  PubMed  Google Scholar 

  3. Hiratsuka H, Miyakawa A, Nakamori K, Kido Y, Sunakawa H, Kohama G (1997) Multivariate analysis of occult lymph node metastasis as a prognostic indicator for patients with squamous cell carcinoma of the oral cavity. Cancer 80:351–356

    Article  PubMed  CAS  Google Scholar 

  4. Kowalski LP, Bagietto R, Lara JR, Santos RL, Silva JJ, Magrin J (2000) Prognostic significance of the distribution of neck node metastasis from oral carcinoma. Head Neck 22:207–214

    Article  PubMed  CAS  Google Scholar 

  5. Lo WL, Kao SY, Chi LY, Wong YK, Chang RC (2003) Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg 61:751–758

    Article  PubMed  Google Scholar 

  6. Cooper DN (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    Article  PubMed  CAS  Google Scholar 

  7. Cooper DN, Barondes SH (1999) God must love galectins; he made so many of them. Glycobiology 9:979–984

    Article  PubMed  CAS  Google Scholar 

  8. Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17

    Article  PubMed  Google Scholar 

  9. Krzeslak A, Lipinska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9:305–328

    PubMed  CAS  Google Scholar 

  10. Chiu CG, Strugnell SS, Griffith OL et al (2010) Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol 176:2067–2081

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Nangia-Makker P, Tait L, Balan V, Hogan V, Pienta KJ, Raz A (2009) Regulation of prostate cancer progression by galectin-3. Am J Pathol 174:1515–1523

    Article  PubMed  CAS  Google Scholar 

  12. Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM, Yu LG (2009) Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69:6799–6806

    Article  PubMed  CAS  Google Scholar 

  13. Hill M, Mazal D, Biron VA et al (2010) A novel clinically relevant animal model for studying galectin-3 and its ligands during colon carcinogenesis. J Histochem Cytochem 58:553–565

    Article  PubMed  CAS  Google Scholar 

  14. Miranda FA, Hassumi MK, Guimaraes MC et al (2009) Galectin-3 overexpression in invasive laryngeal carcinoma, assessed by computer-assisted analysis. J Histochem Cytochem 57:665–673

    Article  PubMed  CAS  Google Scholar 

  15. Honjo Y, Inohara H, Akahani S et al (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635–4640

    PubMed  CAS  Google Scholar 

  16. Alves PM, Godoy GP, Gomes DQ et al (2011) Significance of galectins-1, -3, -4 and -7 in the progression of squamous cell carcinoma of the tongue. Pathol Res Pract 207:236–240

    Article  PubMed  CAS  Google Scholar 

  17. Matarrese P, Fusco O, Tinari N et al (2000) Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer 85:545–554

    Article  PubMed  CAS  Google Scholar 

  18. Giannopoulou M, Dai C, Tan X, Wen X, Michalopoulos GK, Liu Y (2008) Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling. Am J Pathol 173:30–41

    Article  PubMed  CAS  Google Scholar 

  19. Kliment CR, Englert JM, Gochuico BR, Yu G, Kaminski N, Rosas I, Oury TD (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 284:3537–3545

    Article  PubMed  CAS  Google Scholar 

  20. Duan L, Yao J, Wu X, Fan M (2006) Growth suppression induced by Notch1 activation involves Wnt-beta-catenin down-regulation in human tongue carcinoma cells. Biol Cell 98:479–490

    Article  PubMed  CAS  Google Scholar 

  21. Fracalossi AC, Silva MS, Oshima CT, Ribeiro DA (2010) Wnt/beta-catenin signalling pathway following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Exp Mol Pathol 88:176–183

    Article  PubMed  CAS  Google Scholar 

  22. Lo ML (2001) A possible role for the WNT-1 pathway in oral carcinogenesis. Crit Rev Oral Biol Med 12:152–165

    Article  Google Scholar 

  23. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646

    Article  PubMed  CAS  Google Scholar 

  24. Yan D, Avtanski D, Saxena NK, Sharma D (2012) Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J Biol Chem 287:8598–8612

    Article  PubMed  CAS  Google Scholar 

  25. Howard S, Deroo T, Fujita Y, Itasaki N (2011) A positive role of cadherin in Wnt/beta-catenin signalling during epithelial-mesenchymal transition. PLoS One 6:e23899

    Article  PubMed  CAS  Google Scholar 

  26. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  PubMed  CAS  Google Scholar 

  27. Kocemba KA, Groen RW, van Andel H, Kersten MJ, Mahtouk K, Spaargaren M, Pals ST (2012) Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLoS One 7:e30359

    Article  PubMed  CAS  Google Scholar 

  28. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    Article  PubMed  CAS  Google Scholar 

  29. Saussez S, Lorfevre F, Lequeux T et al (2008) The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncol 44:86–93

    Article  PubMed  CAS  Google Scholar 

  30. Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A, Raz A (2004) Galectin-3, a novel binding partner of beta-catenin. Cancer Res 64:6363–6367

    Article  PubMed  CAS  Google Scholar 

  31. Weinberger PM, Adam BL, Gourin CG et al (2007) Association of nuclear, cytoplasmic expression of galectin-3 with beta-catenin/Wnt-pathway activation in thyroid carcinoma. Arch Otolaryngol Head Neck Surg 133:503–510

    Article  PubMed  Google Scholar 

  32. Song S, Mazurek N, Liu C et al (2009) Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res 69:1343–1349

    Article  PubMed  CAS  Google Scholar 

  33. Staal FJ, Sen JM (2008) The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 38:1788–1794

    Article  PubMed  CAS  Google Scholar 

  34. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  35. Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L (2008) Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 180:1087–1100

    Article  PubMed  CAS  Google Scholar 

  36. Hu MC, Rosenblum ND (2005) Smad1, beta-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 132:215–225

    Article  PubMed  CAS  Google Scholar 

  37. Udhayakumar G, Jayanthi V, Devaraj N, Devaraj H (2007) Interaction of MUC1 with beta-catenin modulates the Wnt target gene cyclinD1 in H. pylori-induced gastric cancer. Mol Carcinog 46:807–817

    Article  PubMed  CAS  Google Scholar 

  38. Rahmani M, Carthy JM, McManus BM (2012) Mapping of the Wnt/beta-catenin/TCF response elements in the human versican promoter. Methods Mol Biol 836:35–52

    Article  PubMed  CAS  Google Scholar 

  39. Zeilstra J, Joosten SP, Wensveen FM et al (2011) WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer. Biochem Biophys Res Commun 406:1–6

    Article  PubMed  CAS  Google Scholar 

  40. Sancho R, Nateri AS, de Vinuesa AG, Aguilera C, Nye E, Spencer-Dene B, Behrens A (2009) JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J 28:1843–1854

    Article  PubMed  CAS  Google Scholar 

  41. Saadeddin A, Babaei-Jadidi R, Spencer-Dene B, Nateri AS (2009) The links between transcription, beta-catenin/JNK signaling, and carcinogenesis. Mol Cancer Res 7:1189–1196

    Article  PubMed  CAS  Google Scholar 

  42. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    PubMed  CAS  Google Scholar 

  43. Levy R, Biran A, Poirier F, Raz A, Kloog Y (2011) Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA. PLoS One 6:e27490

    Article  PubMed  CAS  Google Scholar 

  44. Elad-Sfadia G, Haklai R, Balan E, Kloog Y (2004) Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279:34922–34930

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81172568), and the Science and Technology Program Fund of Guangdong Province (No. 303041017005). There were no conflicts of interest or financial interests related to the material in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Song.

Additional information

Li-Ping Wang and Shu-Wei Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LP., Chen, SW., Zhuang, SM. et al. Galectin-3 Accelerates the Progression of Oral Tongue Squamous Cell Carcinoma via a Wnt/β-catenin-Dependent Pathway. Pathol. Oncol. Res. 19, 461–474 (2013). https://doi.org/10.1007/s12253-013-9603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9603-7

Keywords

Navigation