Skip to main content
Log in

Ascovirus and its evolution

  • Published:
Virologica Sinica

Abstract

Ascoviruses, iridoviruses, asfarviruses and poxviruses are all cytoplasmic DNA viruses. The evolutionary origins of cytoplasmic DNA viruses have never been fully addressed. Morphological, genetic and molecular data were used to test if all four cytoplasmic virus families (Ascoviridae, Iridoviridae, Asfarviridae, and Poxvirirdae) evolved from nuclear replicating baculoviruses and how the four virus groups are related. Molecular phylogenetic analyses using DNA polymerase predicted that cytoplasmic DNA viruses might have evolved from nuclear replicating baculoviruses, and that poxviruses and asfarviruses share a common ancestor with iridoviruses. These three cytoplasmic viruses again shared a common ancestor with ascoviruses. Morphological and genetic data predicted the same evolutionary trend as molecular data predicted. A genome sequence comparison showed that ascoviruses have more baculovirus protein homologues than do iridoviruses, which suggested that ascoviruses have evolved from baculoviruses and iridoviruses evolved from ascoviruses. Poxviruses showed genetic and morphological similarity to other cytoplamic viruses, such as ascoviruses, suggesting it has undergone reticulate evolution via hybridization, recombination and lateral gene transfer with other viruses. Within the ascovirus family, we tested if molecular phylogenetic analyses agree with biological inference; that is, ascovirus had an evolutionary trend of increasing genome size, expanding host range and widening tissue tropism for these viruses. Both molecular and biological data predicted this evolutionary trend. The phylogenetic relationship among the four species of ascovirus was predicted to be that TnAV-2 and HvAV-3 shared a common ancestor with SfAV-1 and the three virus species again shared a common ancestor with DpAV-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asgari S. 2006. Replication of Heliothis virescens ascovirus in insect cell lines. Arch Virol. 151: 1689–1699.

    Article  PubMed  CAS  Google Scholar 

  2. Asgaril S, Davis J, Wood D, Wilson P, et al. Sequence and organization of Heliothis virescens ascovirus genome. J Gen Virol, (in press).

  3. Bideshi D K, Demattei. M V, Rouleux-Bonnin F, et al. 2006. Genomic sequence of Spodoptera frugiperda Ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. J Virol, 80: 11791–11805.

    Article  PubMed  CAS  Google Scholar 

  4. Bideshi D K, Tan Y, Bigot Y, et al. 2005. A viral caspase contributes to modified apoptosis for virus transmission. Gene Devel, 19: 1416–1421.

    Article  CAS  Google Scholar 

  5. Bigot Y, Rabouille A, Doury G, et al. 1997a. Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp (Diadromus pulchellus) and its lepidopteran host, Acrolepiopsis assectella. J Gen Virol, 78: 1149–1163.

    PubMed  CAS  Google Scholar 

  6. Bigot Y, Rabouille A, Sizaret P Y, et al. 1997b. Particle and genomic characterization of a new member of the Ascoviridae, Diadromus pulchellus ascovirus. J Gen Virol, 78: 1139–1147.

    PubMed  CAS  Google Scholar 

  7. Browning H W, Federici B A, Oatman E R. 1982. Occurrence of a disease caused by a rickettsia-like organism in a larval population of the cabbage looper, Trichoplusia ni, in southern California. Environ Entomol, 11: 550–554.

    Google Scholar 

  8. Carner G R, Hudson J S. 1983. Histopathology of virus-like particles in Heliothis spp. J Invert Pathol, 41: 238–249.

    Article  Google Scholar 

  9. Cheng X-W, Wang L, Carner G R, et al. 2005. Characterization of three ascovirus isolates from cotton insects. J Invertebr Pathol, 89:193–202.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng X-W, Carner G R, Arif B M. 2000. A new ascovirus from Spodoptera exigua and its relatedness to the isolate from Spodoptera frugiperda. J Gen Virol, 81: 3083–3092.

    PubMed  CAS  Google Scholar 

  11. Cheng X-W, Carner G R, Brown T W. 1999. Circular configuration of the genome of ascoviruses. J Gen Virol, 80: 1537–1540.

    PubMed  CAS  Google Scholar 

  12. Federici B A. 1983. Enveloped double-stranded DNA insect virus with novel structure and cytopathology. Proc Natl Acad Sci USA, 80: 7664–7668.

    Article  PubMed  CAS  Google Scholar 

  13. Federici B A, Hamm J J, Styer E L. 1991. Ascoviridae. In: Atlas of Invertebrate Viruses (Adams J R and Bonami J R, eds.), Boca Raton: CRC Press, Fla. p339–349.

    Google Scholar 

  14. Federici B A, Vlak J M, Hamm J J. 1990. Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol, 71: 1661–1668.

    PubMed  CAS  Google Scholar 

  15. Federici B A, Bigot Y, Granados R R, et al.2005. Family Ascoviridae, In: Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses (Fauguet C M, Mayo M A, Maniloff J, Desselberger U, Ball L A. eds.). Amsterdam, The Netherlands: Elsevier. p247–250.

    Google Scholar 

  16. Felsenstein J. 1993. Phylogeny inference package(PHYLIP), Version 3.5. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  17. Flint S J, Enquist L W, Racaniello V R, et al. 2004. Principles of Virology, Molecular Biology, Pathogenesis, and control of animal viruses. Washington DC: ASM press. p 918.

    Google Scholar 

  18. Granados R P. 1973. Entry of an insect poxvirus by fusion of the virus envelope with the host cell membrane. Virology, 52: 305–309.

    Article  PubMed  CAS  Google Scholar 

  19. Granados R P, Lawler K A. 1981. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology, 108: 297–308.

    Article  PubMed  CAS  Google Scholar 

  20. Hamm J J, Nordlung D A, Marti O G. 1985. Effects of a nonoccluded virus of Spodoptera frugiperda (Lepidoptera: Noctuidae) on the development of a parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae). Environ Entomol, 14: 258–261.

    Google Scholar 

  21. Hamm J J, Pair S D, Jr Marti O G. 1986. Incidence and host range of a new ascovirus isolated from fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Fla. Entomol. 69: 524–541.

    Google Scholar 

  22. Jakob N J, MuÈller K, Bahr U, et al. 2001. Analysis of the First Complete DNA Sequence of an Invertebrate Iridovirus: Coding Strategy of the Genome of Chilo Iridescent Virus. Virology, 286: 182–196.

    Article  PubMed  CAS  Google Scholar 

  23. Kusumah Y M. 2004. Biological and molecular characterization of ascovirus isolates from Indonesia and the United States (PhD. Dissertation). Clemson University. p99.

  24. Labandeira C C, Sepkoski J. 1993. Insect diversity in the fossil record. Science, 261: 310–314.

    Article  PubMed  CAS  Google Scholar 

  25. Lauzon H A, Lucarotti C J, Krell P J, et al. 2004. Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J Virol, 78: 7023–7035.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez M J, Rojas C, Vandame R, et al. 2002. Parasitoid-mediated transmission of an iridescent virus. JInvert Pathol, 80: 160–170.

    Article  Google Scholar 

  27. Nalcacioglu R, Marks H, Vlak J M, et al. 2003. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes. Virology, 317: 321–329.

    Article  PubMed  CAS  Google Scholar 

  28. Newton I R. 2003. The biology and characterisation of the ascoviruses (Ascoviridae: Ascovirus) of Helicoverpa armigera Hübner and Helicoverpa punctigera Wallengren (Lepidoptera: Noctuidae) in Australia. School of Life Sciences. Brisbane, University of Queensland. p191.

    Google Scholar 

  29. O’Reilly D R. 1997. Auxiliary genes of baculoviruses, In: The baculoviruses (Miller L K. ed.). New York: Plenum Press, p 267–300.

    Google Scholar 

  30. Peter M, Nakagawa J, Doree M, et al. 1990. In vitro disassembly of the nuclear lamina and M phase-specific phosphoylation of lamins by cdc2 kinase. Cell, 61: 591–602.

    Article  PubMed  CAS  Google Scholar 

  31. Salas J, Salas M L, Vinuela E. 1999. A African swine fever virus: a missing link between poxviruses and iridoviruses. In: Origin and evolution of viruses (Domingo E, Webster R and Holland J. eds.), Bath Great Britain: Academic Press, p 467–480

    Google Scholar 

  32. Stasiak K, Renault S, Demattei M, et al. 2003. Evidence for the evolution of ascoviruses from irido-viruses. J Gen Virol, 84: 2999–3009.

    Article  PubMed  CAS  Google Scholar 

  33. Swofford D L. 2002. PAUP Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates

    Google Scholar 

  34. Tillman P G, Hamm J J, Styer E L, et al. 2004. Transmission of an ascovirus of Heliothis virescens (Lepidoptera: Noctuidae) and effects of the pathogen on the survival of a parasitoid, Cardiochiles nigriceps (Hymenoptera: Braconidae). Environ Entomol, 33: 633–643.

    Article  Google Scholar 

  35. Villarreal L P. 1999. DNA virus contribution to host evolution. In: Origin and evolution of viruses (Domingo E, Webster R and Holland J. ed), Bath Great Britain: Academic Press, p 391–420.

    Google Scholar 

  36. Villarreal L P. 2005. Viruses and the evolution of life. Washington DC: ASM Press, p395

    Google Scholar 

  37. Wang L, Xue J, Seaborn C P, et al. 2006. Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. Virology, 354: 167–177.

    Article  PubMed  CAS  Google Scholar 

  38. Wickens M. 1990. How the messenger got its tail: Addition of poly (A) in the nucleus. Trends in Biochemical Sciences 15: 277–281.

    Article  PubMed  CAS  Google Scholar 

  39. Williams T. 1998. Insect iridescent viruses. In: The insect viruses. (Miller L K and Ball L A ed.), New York: Plenum Press, p31–68.

    Google Scholar 

  40. Wrigley N G. 1969. An electron microscope study of the structure of Sericesthis iridescent virus. J Gen Virol, 5: 123–134.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wen Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, XW., Wan, XF., Xue, J. et al. Ascovirus and its evolution. Virol. Sin. 22, 137–147 (2007). https://doi.org/10.1007/s12250-007-0015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-007-0015-2

CLC number

Key words

Navigation