Skip to main content
Log in

Spectroscopic Elaboration and Structural Characterizations of New Fe(III), Pd(II), and Au(III) Ampicillin Complexes: Metal-Antibiotic Ligational Behaviors

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Two modes of complexation were resulted upon the chemical interactions of ampicillin (amp) antibiotic drug with iron(III), palladium(II), and gold(III) metal ions in 50/50 % of methanol/distilled water mixed solvent. The chemical formulas of FeIII, PdII, and AuIII complexes are [Fe2(amp)(Cl)5(H2O)3].3H2O, [Pd(amp)2].2H2O and [Au2(amp)(Cl)4].Cl.2H2O. These complexes were characterized using elemental analyses, molar conductivity, (infrared,1H-NMR, UV-vis.) spectra, effective magnetic moment in Bohr magnetons, thermal analysis (TG), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), as well as transmitting electron microscopy (TEM). The binuclear complexes of FeIII and AuIII ions are coordinated toward the oxygen of carbonyl amide and nitrogen of –NH2 groups and oxygens of carbonyl β-lactam ring and deprotonated of the −COOH group, while the mononuclear complex of PdII ions coordinated through oxygens of β-lactam and carboxylate groups. Magnetic susceptibilities of the solid samples indicated that the PdII and AuIII complexes have a diamagnetic form but the FeIII complex has a paramagnetic nature with octahedral ligational statement. The antibacterial and antifungal activities of the respected complexes were tested against some kind of bacteria and fungi strains if comparable with the ampicillin free drug. In vitro cytotoxicity assays of the gold(III) complex were determined against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Holten KB, Onusko EM. Appropriate prescribing of oral beta-lactam antibiotics. Am Fam Physician. 2000;62(3):611–20.

    CAS  PubMed  Google Scholar 

  2. Elander RP. Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol. 2003;61(5–6):385–92.

    Article  CAS  PubMed  Google Scholar 

  3. Wickus GG, Warth AD, Strominger JL. Appearance of muramic lactam during cortex synthesis in sporulating cultures of Bacillus cereus and Bacillus megaterium. J Bacteriol. 1972;111(2):625–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Ming LJ. Structure and function of “metalloantibiotics”. Med Res Rev. 2003;23(6):697–762. Review.

    Article  CAS  PubMed  Google Scholar 

  5. Guschlbauer W, Saenger W, editors. DNA–ligand interactions: from drugs to proteins (NATOASI Series. Series A, Life Science, Vol. 137), New York: Plenum; 1987

  6. Neville RK, editor. Chemistry and physics of DNA–ligand interactions. New York: Adenine Press; 1990

  7. Chaires JB, Waring MJ, Drug–nucleic acid interactions. Met Enzymol Vol. 340, San Diego, CA: Academic Press; 2001.

  8. Tullius TD, editor. Metal-DNA Chemistry. ACS Symposium Series 402, the American Chemical Society, 1989.

  9. Barton JK, Metal/nucleic acid interactions. In: Bertini I, Gray HB, Lippard SJ, Valentine JS, editors. Bioinorganic Chemistry. University Science Books; 1994.

  10. Umezawa H, Maeda K, Takeuchi T, Okami Y. New antibiotics, bleomycin A and B. J Antibiot (Tokyo). 1966;19(5):200–9.

    CAS  Google Scholar 

  11. Flora SJ, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010;7(7):2745–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hariprasath K, Deepthi B, Sudheer I, Babu P, Venkatesh P, Sharfudeen S, et al. Metal complexes in drug research—a review. J Chem Pharm Res. 2010;2(4):496–99.

    CAS  Google Scholar 

  13. Thomas G. Medicinal chemistry. 2nd ed. Chichester: John Wiley & Sons Ltd; 2007. p. 496–7.

    Google Scholar 

  14. Williams DR. The metals of life. London: Van Nostrand Reinhold; 1971.

    Google Scholar 

  15. Sorenson JR. Copper chelates as possible active forms of the antiarthritic agents. J Med Chem. 1976;19(1):135–48.

    Article  CAS  PubMed  Google Scholar 

  16. Brown DH, Smith WE, Teape JW, Lewis AJ. Antiinflammatory effects of some copper complexes. J Med Chem. 1980;23(7):729–34.

    Article  CAS  PubMed  Google Scholar 

  17. Sorenson JRJ. In: Nraign JO, editor. Copper in the environment. New York: Wiley-Interscience; 1981. Part 2, Chapter 5.

    Google Scholar 

  18. Anacona JR, Silva GD. Synthesis and antibacterial activity of cefotaxime metal complexes. J Chil Chem Soc. 2005;50(2):447–50.

    Article  CAS  Google Scholar 

  19. Alekseev VG, Zamyslov VG. Al(III) complexes with the ampicillin, amoxicillin, and cephalexin anions. Russ J Coord Chem. 2007;33(4):254–7.

    Article  CAS  Google Scholar 

  20. Anacona JR, Alvarez P. Synthesis and antibacterial activity of metal complexes of cefazolin. Trans Met Chem. 2002;27:856–60.

    Article  CAS  Google Scholar 

  21. Bravo A, Anacona JR. Synthesis and characterization of metal-complexes with ampicillin. J Coord Chem. 1998;44(1-2):173–82.

    Article  CAS  Google Scholar 

  22. Anacona JR, Rodriguez I. Synthesis and antibacterial activity of cephalexin metal complexes. J Coord Chem. 2004;57:1263–9.

    Article  CAS  Google Scholar 

  23. Refat MS, El–Metwaly NM. Legitional behavior of 5,5 – diethylbarbituric acid sodium salt (HL) towards Mg, Ca, Sr, Ba(II), spectral, thermal and biological studies. J Mol Str. 2011;988(1-3):111–8.

    Article  CAS  Google Scholar 

  24. Refat MS, Mohamed SF. Spectroscopic, thermal and antitumor investigations of sulfasalazine drug in situ complexation with alkaline earth metal ions. Spectrochim Acta A Mol Biomol Spectrosc. 2011;82(1):108–17.

    Article  CAS  PubMed  Google Scholar 

  25. Refat MS. Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3). J Mol Str. 2010;969:163–71.

    Article  CAS  Google Scholar 

  26. Refat MS, El-Shazly SA. Identification of a new anti-diabetic agent by combining VOSO4 and vitamin E in a single molecule: studies on its spectral, thermal and pharmacological properties. Eur J Med Chem. 2010;45(7):3070–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by standardized single disc method. Am J Clin Pathol. 1966;44:493–6.

    Google Scholar 

  28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63.

    Article  CAS  PubMed  Google Scholar 

  29. Gangadevi V, Muthumary J. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. African J Biotechnol. 2007;6(12):1382–6.

    CAS  Google Scholar 

  30. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  31. Refat MS. Synthesis and characterization of norfloxacin-transition metal complexes (group 11, IB): spectroscopic, thermal, kinetic measurements and biological activity. Spectrochim Acta A Mol Biomol Spectrosc. 2007;68(5):1393–405.

    Article  PubMed  Google Scholar 

  32. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1997.

    Google Scholar 

  33. Pavia DL, Lampman GM, Kriz GS. "Introduction to Spectroscopy" 3rd Ed. Brooks Cole USA, pp. 515 (2000).

  34. Deacon GB, Phillips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–30.

    Article  CAS  Google Scholar 

  35. Ross SD. Inorganic infrared and Raman spectra. London: Mc Graw Hill; 1972.

    Google Scholar 

  36. Ogunniran KO, Tella AC, Alensela M, Yakubu MT. Synthesis, physical properties, antimicrobial potentials of some antibiotics complexed with transition metals and their effects on alkaline phosphatase activities of selected rat tissues. African J Biotechnol. 2007;6(10):1202–8.

    CAS  Google Scholar 

  37. Bailar JC, Emeleus H, Nyholm JR, Dickenson AF. Comprehensive inorganic chemistry; Pergamon Press, 1975, Vol III, 517.

  38. Lever ABP. The electronic spectra of tetragonal metal complexes: analysis and significance. Coord Chem Rev. 1968;3:119–40.

    Article  CAS  Google Scholar 

  39. Abdalrazaq EA, Buttrus NH, Abd Al-Rahman AA. ynthesis and characterization of gold(III) complexes with bis-(1,4-sodium thioglycolate) butane ligand. Asian J Chem. 2010;22(3):2179–86.

    CAS  Google Scholar 

  40. Lee DL. New concise in inorganic chemistry. New York: ELBS; 1991.

    Google Scholar 

  41. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  42. Yusuff KKM, Sreekala R. Thermal and spectral studies of 1-benzyl-2-phenylbenzimidazole complexes of cobalt(II). Thermochim Acta. 1990;159:357–68.

    Article  CAS  Google Scholar 

  43. Frost AA, Peasron RG. Kinetics and mechanism. New York: Wiley; 1961.

    Google Scholar 

  44. Cullity BD. Elements of X-ray diffraction, Addison-Wesley, Reading, MA, 1972, p. 102.

  45. Salavati-Niasari M, Mohandes F, Davar F, Mazaheri M, Monemzadeh M, Yavarinia N. Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg Chim Acta. 2009;362(10):3691–7.

    Article  CAS  Google Scholar 

  46. Velumani S, Mathew X, Sebastian PJ. Structural and optical characterization of hot wall deposited CdSexTe1-x films. Solar Energy Mater Solar Cells. 2003;76:359–68.

    Article  CAS  Google Scholar 

  47. Carotenuto G, Nicolais F. Reversible thermochromic nanocomposites based on thiolate-capped silver nanoparticles embedded in amorphous polystyrene. Materials. 2009;2(3):1323–40.

    Article  CAS  Google Scholar 

  48. Pearson RG. Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem. 1989;54(6):1423–30.

    Article  CAS  Google Scholar 

  49. Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chem Rev. 2003;103(5):1793–873.

    Article  CAS  PubMed  Google Scholar 

  50. Parr PRG, Szentpály LV, Liu S. Electrophilicity index. J Am Chem Soc. 1999;121(9):1922–4.

    Article  CAS  Google Scholar 

  51. Chattaraj K, Giri S. Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J Phys Chem. 2007;A 111(43):11116–21.

    Article  Google Scholar 

  52. Speie G, Csihony J, Whalen AM, Pie-Pont CG. Studies on aerobic reactions of ammonia/3,5-di-tert-butylcatechol schiff-base condensation products with copper, copper(I), and copper(II). Strong copper(II)—radical ferromagnetic exchange and observations on a unique N–N coupling reaction. Inorg Chem. 1996;35:3519–35.

    Article  Google Scholar 

  53. Yousef TA, Abu El-Reash GM, El Morshedy RM. Structural, spectral analysis and DNA studies of heterocyclic thiosemicarbazone ligand and its Cr(III), Fe(III), Co(II) Hg(II), and U(VI) complexes. J Mol Struct. 2013;1045:145–59.

    Article  CAS  Google Scholar 

  54. Helal MH, El-Awdan SA, Salem MA, Abd-elaziz TA, Moahamed YA, El-Sherif AA, et al. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochim Acta Part A. 2015;135:764–73.

    Article  CAS  Google Scholar 

  55. Hyper chem. Version 7.51 Hyper cube, INC.

  56. Raman N, Kulandaisamy A, Thangaraja C. Synthesis, structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes. Trans Metal Chem. 2004;29(2):129–35.

    Article  CAS  Google Scholar 

  57. Tabassum S, Asim A, Arjmand F, Arjmand F, Afzal M, Bagchi V. Synthesis and characterization of copper(II) and zinc(II)- based potential chemotherapeutic compounds: their biological evaluation viz. DNA binding profile, cleavage and antimicrobial activity. Eur J Med Chem. 2012;58:308–16.

    Article  CAS  PubMed  Google Scholar 

  58. Patel M, Joshi HN, Patel CR. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ruthenium–fluoroquinolone complexes. J Chem Sci. 2014;126(3):739–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Deanship of Scientific Research at the University of Princess Nora Bint Abdul Rahman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moamen S. Refat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khodir, F.A.I., Refat, M.S. Spectroscopic Elaboration and Structural Characterizations of New Fe(III), Pd(II), and Au(III) Ampicillin Complexes: Metal-Antibiotic Ligational Behaviors. J Pharm Innov 10, 335–347 (2015). https://doi.org/10.1007/s12247-015-9230-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-015-9230-9

Keywords

Navigation