Skip to main content
Log in

Synthesis, spectroscopic, and antimicrobial study of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin antibiotic drug

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Synthesis, spectroscopic characterization, theoretical and antimicrobial studies of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin (amox) antibiotic drug are presented in the current paper. Structure of 1: 1 (metal: amox) complexes were elucidated on the basis of elemental analyses, and IR, Raman, 1H NMR, and electronic spectral data. According to molar conductance measurements the complexes had electrolyte nature. Amoxicillin reacted with metal ions as a tridentate ligand coordinated with metal ions via–NH2,–NH, and β-lactam carbonyl groups. The complexes were formulated as [Ca(amox-Na)(H2O)]·Cl2·4H2O (1), [Fe(amox-Na)(H2O)3]·Cl3·3H2O (2), [Pd(amox-Na)(H2O)]·Cl2 (3), and [Au(amox-Na)(H2O)]·Cl3 (4). Kinetic thermodynamic parameters (E*, ΔS*, ΔH*, and ΔG*) were calculated based on the Coats–Redfern and Horowitz–Metzger methods using thermo gravimetric curves of TG and DTG. Nanosize particles of amoxicillin complexes have been studied by XRD, SEM, and TEM methods. Theoretical studies of the synthesized complexes have been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abd El–Wahed, M.G., El–Megharbel, S.M., El–Sayed, M.Y., Zahran, Y.M., and Refat, M.S., Russ. J. Gen. Chem., 2013, vol. 83, pp. 438–2446.

    Article  Google Scholar 

  2. Refat, M.S., Mohamed, G.G., Ibrahim, M.Y.S., Killa, H.M.A., and Fetooh, H., Russ. J. Gen. Chem., 2013, vol. 83, pp. 479–2487.

    Google Scholar 

  3. Zaky, M., El–Sayed, M.Y., El–Megharbel, S.M., Taleb, S.A., and Refat, M.S., Russ. J. Gen. Chem., 2013, vol. 83, pp. 488–2501.

    Article  Google Scholar 

  4. Al–Saif, F.A., and Refat, M.S., Russ. J. Gen. Chem., 2014, vol. 84, pp. 43–156.

    Google Scholar 

  5. Refat, M.S., and Kobeasy, M.I., Russ. J. Gen. Chem., 2014, vol. 84, pp. 67–774.

    Google Scholar 

  6. Salaman, M., Refat, M.S., El–Korashy, S.A., and Hussien, M.A., Russ. J. Gen. Chem., 2014, vol. 84, pp. 841–1846.

    Google Scholar 

  7. Ming, L., Med. Res. Rev., 2003, vol. 23, pp. 97–762.

    Article  Google Scholar 

  8. Turel, I., Coord. Chem Rev., 2002, vol. 232, pp. 7–47.

    Article  Google Scholar 

  9. Drevenski, P., Golobic, A., Turel, I., Poklar, N., and Sepcic, K., Acta Chim. Slov., 2002, vol. 49, pp. 57–870.

    Google Scholar 

  10. King, D.E., Malone, R., and Lilley, S.H., Am. Fam. Physicians, 2000, vol. 61, pp. 741–2748.

    Google Scholar 

  11. Srivastava, R.S., Inorg. Chim. Acta, 1981, vol. 55, pp. L71–L74.

    Article  CAS  Google Scholar 

  12. Kopf–Maier, P., Eur. J. Clin. Pharmacol., 1994, vol. 47, pp. 1–16.

    Google Scholar 

  13. Michael, I.P., The Chemistry of β-Lactams, Glasgow, Chapman & Hall, 1992.

    Google Scholar 

  14. Zayed, M.A. and Abdallah, S.M., Spectrochim Acta A, 2005, vol. 61, pp. 231–2238.

    Google Scholar 

  15. Boles, M.O., Girven, R.J., and Gane, P.A.C., Acta Crystallogr. B, 1976, vol. 34, pp. 61–466.

    Google Scholar 

  16. Castanheira, M., Sader, H., Desphande, S., Lalitagauri, M., Thomas, R., and Jones, R.N., Antimicrob. Agents Chemotherap., 2008, vol. 52, pp. 70–573.

    Google Scholar 

  17. Subramanian, S., Roberts, C.L., Anthony, C.H., Martin, M.H., Edwards, W.S., Rhodes, M.J., and Campbell, B., Antimicrob. Agents Chemotherap., 2009, vol. 52, pp. 27–434.

    Google Scholar 

  18. Neal, M.J., Medical Pharmacology at a Glance, Oxford: Blackwell, 1991, 2 ed. p.78.

    Google Scholar 

  19. Neuman, M. and Degli, V., Antibioticied Agenti Chemioterapici Anti–Infettivi, Rome: Sigma-Tau, 1994, p. 133, 5 ed.

    Google Scholar 

  20. Campoli–Richards, D.M., and Brogden, R.N., Drugs, 1987, vol. 33, pp. 77–609.

    Google Scholar 

  21. Cort, W.M., Scott, J.W., Araujo, M., Mergens, W.J., Cannalonga, M.A., Osadca, M., Harley, H., Parrish, D.R., and Pool, W.R., J. Am. Oil Chemists Soc., 1975, vol. 52, pp. 74–178.

    Article  Google Scholar 

  22. Seunjae, L., Yoshiki, M., Masashi, M., Hiroshi, O., and Kuniyo, I., J. Biochem., 2006, vol. 139, pp. 007–1015.

    Google Scholar 

  23. Bhatia, M.S., Kashedikar, S.G., and Chaturvedi, S.C., Ind. Drugs, 1996, vol. 33, pp. 13–218.

    Google Scholar 

  24. Satoskazr, R.S. and Bhandarkar, S.D., Pharmacology and Pharmacother Apeutics, Bombay: Popular Prakashan, 1990, vol. 2, 11 ed., p.549.

    Google Scholar 

  25. Rang, H.P., Pharmacology, London: Churchil Livinston Pub., 1996, 3 ed., p.691.

    Google Scholar 

  26. Dalc, M.M., Pharmacology, London: Churchil Livinston Pub., 1998, 3 ed., p.725.

    Google Scholar 

  27. Fleming, P.C., Goldner, M., and Glass, D.G., J. Bacteriol., 1969, vol. 98, pp. 94–397.

    Google Scholar 

  28. Baczkowicz, M., Wojtowicz, D., Anderegg, J.W., Schilling, C.H., and Tomasik, P., Carbohydr. Polym., 2003, vol. 52, pp. 63–268.

    Article  Google Scholar 

  29. Delgado, J. and Remers, W.A., Textbook of Organic Medicinal and Pharmaceutical Chemistry, J. Lippincott Co., 1991, 9 ed., p.244.

    Google Scholar 

  30. Lyle, S.L. and Yassin, S.S., Analytica. Chim. Acta, 1993, vol. 274, pp. 25–230.

    Article  Google Scholar 

  31. Pellerito, L., Maggio, F., Consiglio, M., Pellerito, A., Stocco, G.C., and Grimaudo, S., App. Organomet. Chem., 1995, vol. 9, pp. 27–239.

    Article  Google Scholar 

  32. Stefano, R.D., Scopelliti, M., Pellerito, C., Fiore, T., Vitturi, R., Colomba, M.S., Gianguzza, P., Stocco, G.C., Consiglio, M., and Pellerito, L., J. Inorg. Biochem., 2002, vol. 89, pp. 79–292.

    Article  Google Scholar 

  33. Imran, M., Iqbal, J., Mehmood, T., and Latif, S., J. Biological Sciences, 2006, vol. 6, pp. 46–949.

    Google Scholar 

  34. Khallowa, K.I. and Al–Omari, N.A., Tikrit J. Pure Sci., 2008, vol. 13, pp. 52–155.

    Google Scholar 

  35. Kumar, K. and Mishra, P., Main Group Chemistry, 2008, vol. 7, pp. 1–14.

    Article  CAS  Google Scholar 

  36. Mishra, P., Int. J. ChemTech Res., 2009, vol. 1, pp. 01–419.

    Google Scholar 

  37. Joshi, S., Pawar, V., and Uma, V., Int. J. Pharma. Bio. Sci., 2011, vol. 2, pp. 40–250.

    Google Scholar 

  38. Alekseev, V.G. and Zamyslov, V.G., Russ. J. Coord. Chem., 2007, vol. 33, pp. 54–257.

    Google Scholar 

  39. Arefi, D., Maknoni, F., and Khoshnood, R.S., Clin. Biochem., 2011, vol. 44, pp. S265.

    Article  Google Scholar 

  40. Refat, M.S., Kobeasy, M.I., and El-Shazly, M.A., Russ. J. Gen. Chem., 2014, vol. 84, pp. 411–1416.

    Google Scholar 

  41. Zaky, M., El-Sayed, M.Y., El-Megharbel, S.M., Taleb, S.A., and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, pp. 76–184.

    Article  Google Scholar 

  42. Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, pp. 18–730.

    Google Scholar 

  43. Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, pp. 734–1744.

    Google Scholar 

  44. El-Megharbel, S.M., Adam, A.M.A., Megahed, A.S., and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, pp. 366–2373.

    Article  Google Scholar 

  45. El–Megharbel, S.M., Hamza, R.Z., and Refat, M.S., Chem.-Biol. Interact., 2014, vol. 220, pp. 69–180.

    Google Scholar 

  46. Bauer, A.W., Kirby, W.M., Sherris, C., and Turck, M., Am. J. Clinical Pathology, 1966, vol. 45, pp. 93–496.

    Article  Google Scholar 

  47. Pfaller, M.A., Burmeister, L., Bartlett, M.A., and Rinaldi, M.G., J. Clin. Microbiol., 1988, vol. 26, pp. 437–1551.

    Google Scholar 

  48. National Committee for Clinical Laboratory Standards, Performance vol. antimicrobial susceptibility of Flavobacteria, 1997.

  49. National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7–A3. National Committee for Clinical Laboratory Standards, Villanova, Pa, 1993.

  50. National Committee for Clinical Laboratory Standards, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium–Forming Filamentous Fungi: Proposed Standard M38–A. NCCLS, Wayne, PA, USA., 2002.

  51. National Committee for Clinical Laboratory Standards, Methods for Antifungal Disk Diffusion Susceptibility Testing of Yeast: Proposed Guideline M44-P. NCCLS, Wayne, PA, USA, 2003.

  52. Liebowitz, L.D., Ashbee, H.R., Evans, E.G.V., Chong, Y., Mallatova, N., Zaidi, M., Gibbs, D., and Global Antifungal Surveillance Group, Diagn. Microbiol. Infect. Dis., 2001, vol. 4, pp. 7–33.

    Google Scholar 

  53. Matar, M.J., Ostrosky–Zeichner, L., Paetznick, V.L., Rodriguez, J.R., Chen, E., and Rex, J.H., Antimicrob. Agents Chemother., 2003, vol. 47, pp. 647–1651.

    Article  Google Scholar 

  54. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, pp. 5–63.

    Article  Google Scholar 

  55. Gangadevi, V. and Muthumary, J., African J. Biotechnology, 2007, vol. 6, pp. 382–1386.

    Google Scholar 

  56. Refat, M.S., Spectrochimica Acta, A, 2007, vol. 68, pp. 393–1405.

    Google Scholar 

  57. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compound, New York: Wiley, 1978.

    Google Scholar 

  58. Kanooco, N., Singh, R.V., and Tandon, J.P., Syn. React. Inorg. Met. Org. Chem., 1987, vol. 17, pp. 37–847.

    Google Scholar 

  59. Deacon, G.B. and Phillips, R. J., Coord. Chem. Rev., 1980, vol. 33, pp. 27–250.

    Article  Google Scholar 

  60. Anacona, J.R. and Figueron, E.M., J. Coord. Chem., 1999, vol. 48, pp. 81–189.

    Google Scholar 

  61. Ozturk, O.F., Sekerci, M., and Ozdemir, E., Russ. J. Coord. Chem., 2005, vol. 31, pp. 51–654.

    Article  Google Scholar 

  62. Ozturk, O.F., Sekerci, M., and Ozdemir, E., Russ. J. Gen. Chem., 2006, vol. 76, pp. 3–36.

    Google Scholar 

  63. Ghiladi, R.A., Kretzer, R.M., Guzei, I., Rheingold, A.L., Neuhold, Y., Hatwell, K.R., Zuberbuhler, A.D., and Karlin, K.D., Inorg. Chem., 2001, vol. 40, pp. 754–5767.

    Article  Google Scholar 

  64. Hamada, Y.Z., Carlson, B.L., and Shank, J.T., Synth. & React. Inorg. Met–Org. Chem., 2003, vol. 33, pp. 425–1440.

    Google Scholar 

  65. Cotton, F.A., Goodgame, D.M.L., and Goodgame, M., J. Am. Chem. Soc., 1962, vol. 84, pp.pp. 67–172.

    Google Scholar 

  66. Figgis, B.N., Introduction to Ligand Fields, New York: John Wiley and Sons, 1967, pp.285.

    Google Scholar 

  67. Abdalrazaq, E.A., Buttrus, N.H., and Abd Al-Rahman, A.A., Asian J. Chem., 2010, vol. 22, pp. 179–2186.

    Google Scholar 

  68. Ibrahim, E.S., Sallam, S.A., Orabi, A.S., El-Shetary, B.A., and Lentz, A., Monatshefte fur Chemie, 1998, vol. 129, pp. 59–171.

    Article  Google Scholar 

  69. Coats, A.W. and Redfern, J. P., Nature, 1964, vol. 201, pp. 8–69.

    Article  Google Scholar 

  70. Yusuff, K.K.M. and Sreekala, R., Thermochim Acta, 1990, vol. 159, pp. 57–368.

    Article  Google Scholar 

  71. Frost, A.A. and Peasron, R.G., Kinetics and Mechanism, New York: Wiley, 1961.

    Google Scholar 

  72. Cullity, B.D., Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, 1972, p.102.

    Google Scholar 

  73. Salavati–Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M., and Yavarinia, N., Inorg. Chim. Acta, 2009, vol. 362, pp. 691–3697.

    Article  Google Scholar 

  74. Velumani, S., Mathew, X., and Sebastian, P.J., Solar Energy Mater. Solar Cells, 2003, vol. 76, pp. 59–368.

    Google Scholar 

  75. Helal, M.H., El–Awdan, S.A., Salem, M.A., Abdelaziz, T.A., Moahamed, Y.A., El–Sherif, A.A., and Mohamed, G.A.M., Spectrochim. Acta Part A, 2015, vol. 135, pp. 64–773.

    Article  Google Scholar 

  76. Hyper Chem. Version 7.51 Hyper cube, INC.

  77. Pearson, R.G., J. Org. Chem., 1989, vol. 54, pp. 423–1430.

    Google Scholar 

  78. Geerlings, P., De Proft, F., and Langenaeker, W., Chem. Rev., 2003, vol. 103, pp. 793–1873.

    Article  Google Scholar 

  79. Parr, R.G., J. Am. Chem. Soc., 1999, vol. 121, pp. 922–1924.

    Article  Google Scholar 

  80. Chattaraj, P.K. and Giri, S., J. Phys. Chem. A, 2007, vol. 111, pp. 1116–11121

    Google Scholar 

  81. Speie, G., Csihony, J., Whalen, A.M., and Pie-Pont, C.G., Inorg. Chem., 1996, vol. 35, pp. 519–3535.

    Google Scholar 

  82. Raman, N., Kulandaisamy, A., and Thangaraja, C., Trans. Metal Chem., 2004, vol. 29, pp. 29–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Refat.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khodir, F.A.I., Refat, M.S. Synthesis, spectroscopic, and antimicrobial study of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin antibiotic drug. Russ J Gen Chem 86, 708–717 (2016). https://doi.org/10.1134/S1070363216030324

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216030324

Keywords

Navigation