Skip to main content
Log in

Performance Design of an Exhaust Superheater for Waste Heat Recovery of Construction Equipment

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔP:

pressure drop, kPa

ΔT:

temperature difference, °C

Q:

heat, kW

T:

temperature, °C

exh:

exhaust

i:

inlet

o:

outlet

W/F:

working fluid

References

  • Bae, S. J., Heo, H. S. and Yoo, H. S. (2015). Cycle design for low temperature waste heat recovery of a construction equipment. KSAE Annual Conf. Proc., Korean Society of Automotive Engineers, 152–157.

    Google Scholar 

  • Bae, S. J., Heo, H. S., Lee, H. K., Lee, D. H., Kim, T. J., Park, J. S., Lee, H. Y. and Kim, C. J. (2011). Performance characteristics of a rankine steam cycle and boiler for engine waste heat recovery. SAE Paper No. 2011-28-0055.

    Google Scholar 

  • Endo, T., Kawajiri, S., Kojima, Y., Takahashi, K., Baba, T., Ibaraki, S., Takahashi, T. and Shinohara, M. (2007). Study on maximizing energy in automotive engines. SAE Paper No. 2007-01-0257.

    Google Scholar 

  • Freymann, R., Ringler, J., Seifert, M. and Horst, T. (2012). The second generation turbosteamer. MTZ Worldwide 73, 2, 18–28.

    Article  Google Scholar 

  • Heo, H. S. and Bae, S. J. (2010). Technology trends of rankine steam cycle for engine waste heat recovery. Auto Journal, Korean Society of Automotive Engineers 32, 5, 23–32.

    Google Scholar 

  • Ringler, J., Seifert, M., Guyotot, M. and Hubner, M. (2009). Rankine cycle for waste heat recovery of IC engines. SAE Paper No. 2009-01-0174.

    Google Scholar 

  • Teng, H., Regner, G. and Cowland, C. (2007). Waste heat recovery of heavy-duty diesel engines by organic rankine cycle part II: Working fluids for WHR-ORC. SAE Paper No. 2007-01-0543.

    Google Scholar 

  • Vicente, P. G., García, A. and Viedma. A. (2004). Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers. Int. J. Heat and Mass Transfer 47, 4, 671–681.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Seok Heo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, H.S., Bae, S.J., Hong, S.M. et al. Performance Design of an Exhaust Superheater for Waste Heat Recovery of Construction Equipment. Int.J Automot. Technol. 19, 221–231 (2018). https://doi.org/10.1007/s12239-018-0021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0021-4

Key Words

Navigation