Skip to main content
Log in

Fracture loci of DP980 steel sheet for auto-body at intermediate strain rates

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper introduces the effect of the strain rate on the ductile fracture of DP980 1.2t steel sheet. Tensile tests of DP980 sheet are performed at a range of strain rates from 0.001 s−1 to 100 s−1 with three different shapes of specimens: the diagonally notched specimen for the in-plane shear test; the dog bone specimen for the uniaxial tension test; and grooved specimen for the plane strain tension test. To trace the strain on the surface of the specimen, 2-D digital image correlation (DIC) technique is adopted to encompass the remarkable transition of the fracture characteristics including the fracture strain, loading path and strain rate sensitivity. The negative stain rate sensitivity is observed on the equivalent strain to fracture which corresponds to the experimental results at low strain rate ranging from 0.001 s−1 to 0.1 s−1. The transition of thermal condition from isothermal to adiabatic comes into play to increase the equivalent strain to fracture at the intermediate strain rate from 0.01 s−1 to 1 s−1. The fracture loci incorporating with the Lou-Huh ductile fracture criterion are developed to identify the strain rate effect in the wide regime of triaxiality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argon, A. S., Im, J. and Safoglu, R. (1975). Cavity formation from inclusions in ductile fracture. Metallurgical Transactions A 6, 4, 825–837.

    Article  Google Scholar 

  • Bao, Y. and Wierzbicki, T. (2004). A comparative study on various ductile crack formation criteria. J. Engineering Materials and Technology 126, 3, 314–324.

    Article  Google Scholar 

  • Beese, A. M., Luo, M., Li, Y., Bai, Y. and Wierzbicki, T. (2010). Partially coupled anisotropic fracture model for aluminum sheets. Engineering Fracture Mechanics 77, 7, 1128–1152.

    Article  Google Scholar 

  • Chung, K., Kim, H. and Lee, C. (2014). Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity. Part I: Deformation path insensitive formula based on theoretical models. Int. J. Plasticity, 58, 3–34.

    Google Scholar 

  • Ghahremaninezhad, A. and Ravi-Chandar, K. (2012). Ductile failure behavior of polycrystalline Al 6061-T6. Int. J. Fracture 174, 2, 177–202.

    Article  Google Scholar 

  • Ghahremaninezhad, A. and Ravi-Chandar, K. (2013). Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading. Int. J. Fracture 180, 1, 23–39.

    Article  Google Scholar 

  • Gologanu, M., Leblond, J. B. and Devaux, J. (1993). Approximate models for ductile metals containing nonspherical voids-Case of axisymmetric prolate ellipsoidal cavities. J. Mechanics and Physics of Solids 41, 11, 1723–1754.

    Article  MATH  Google Scholar 

  • Goods, S. H. and Brown, L. M. (1979). Overview no. 1: The nucleation of cavities by plastic deformation. Acta Metallurgica 27, 1, 1–15.

    Article  Google Scholar 

  • Goodwin, G. M. (1968). Application of strain analysis to sheet metal forming problems in the press shop. SAE Paper No. 680093.

    Google Scholar 

  • Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. J. Engineering Materials and Technology 99, 1, 2–15.

    Article  Google Scholar 

  • Hill, R. T. (1952). On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mechanics and Physics of Solids 1, 1, 19–30.

    Article  MathSciNet  Google Scholar 

  • Huh, H., Lim, J. H. and Park, S. H. (2009). High speed tensile test of steel sheets for the stress-strain curve at the intermediate strain rate. Int. J. Automotive Technology 10, 2, 195–204.

    Article  Google Scholar 

  • Huh, J., Huh, H. and Lee, C. S. (2013). Effect of strain rate on plastic anisotropy of advanced high strength steel sheets. Int. J. Plasticity, 44, 23–46.

    Article  Google Scholar 

  • Johnson, G. R. and Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 21, 1, 31–48.

    Article  Google Scholar 

  • Keeler, S. P. and Backofen, W. A. (1963). Plastic instability and fracture in sheets stretched over rigid punches. Asm Trans Q 56, 1, 25–48.

    Google Scholar 

  • Kim, S. B., Huh, H., Bok, H. H. and Moon, M. B. (2011). Forming limit diagram of auto-body steel sheets for high-speed sheet metal forming. J. Materials Processing Technology 211, 5, 851–862.

    Article  Google Scholar 

  • Leblond, J. B., Perrin, G. and Devaux, J. (1995). An improved Gurson-type model for hardenable ductile metals. European J. Mechanics. A. Solids 14, 4, 499–527.

    MathSciNet  MATH  Google Scholar 

  • Li, H., Fu, M. W., Lu, J. and Yang, H. (2011). Ductile fracture: Experiments and computations. Int. J. Plasticity 27, 2, 147–180.

    Article  Google Scholar 

  • Li, Q., Xu, Y. B., Lai, Z. H., Shen, L. T. and Bai, Y. L. (2000). Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy. Materials Science and Engineering: A 276, 1-1, 250–256.

    Article  Google Scholar 

  • Lou, Y., Huh, H., Lim, S. and Pack, K. (2012). New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int. J. Solids and Structures 49, 25, 3605–3615.

    Article  Google Scholar 

  • Lou, Y., Yoon, J. W. and Huh, H. (2014). Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int. J. Plasticity, 54, 56–80.

    Article  Google Scholar 

  • Luo, M. (2012). Anisotropic Ductile Fracture of Metal Sheets: Experimental Investigation and Constitutive Modeling. Ph. D. Dissertation. Massachusetts Institute of Technology. Cambridge, Massachusetts, USA.

    Google Scholar 

  • Marciniak, Z. and Kuczynski, K. (1967). Limit strains in the processes of stretch-forming sheet metal. Int. J. Mechanical Sciences 9, 9, 609IN1613–612IN2620.

    Article  Google Scholar 

  • McClintock, F. A. (1968). A criterion for ductile fracture by the growth of holes. J. Applied Mechanics 35, 2, 363–371.

    Article  Google Scholar 

  • Needleman, A. and Tvergaard, V. (1984). An analysis of ductile rupture in notched bars. J. Mechanics and Physics of Solids 32, 6, 461–490.

    Article  Google Scholar 

  • Pardoen, T. and Hutchinson, J. W. (2000). An extended model for void growth and coalescence. J. Mechanics and Physics of Solids 48, 12, 2467–2512.

    Article  MATH  Google Scholar 

  • Pack, K. and Roth, C. C. (2016). The second Sandia Fracture Challenge: Blind prediction of dynamic shear localization and full fracture characterization. Int. J. Fracture 198, 1-2, 197–220.

    Article  Google Scholar 

  • Ren, Y., Tan, C. W., Zhang, J. and Wang, F. C. (2011). Dynamic fracture of Ti-6Al-4V alloy in Taylor impact test. Trans. Nonferrous Metals Society of China 21, 2, 223–235.

    Article  Google Scholar 

  • Rice, J. R. and Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. J. Mechanics and Physics of Solids 17, 3, 201–217.

    Article  Google Scholar 

  • Rodriguez, A. K., Ayoub, G. A., Mansoor, B. and Benzerga, A. A. (2016). Effect of strain rate and temperature on fracture of magnesium alloy AZ31B. Acta Materialia, 112, 194–208.

    Article  Google Scholar 

  • Roth, C. C. and Mohr, D. (2014). Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling. Int. J. Plasticity, 56, 19–44.

    Article  Google Scholar 

  • Stoughton, T. B. and Yoon, J. W. (2012). Path independent forming limits in strain and stress spaces. Int. J. Solids and Structures 49, 25, 3616–3625.

    Article  Google Scholar 

  • Sato, K., Yu, Q., Hiramoto, J., Urabe, T. and Yoshitake, A. (2015). A method to investigate strain rate effects on necking and fracture behaviors of advanced highstrength steels using digital imaging strain analysis. Int. J. Impact Engineering, 75, 11–26.

    Article  Google Scholar 

  • Swift, H. (1952). Plastic instability under plane stress. J. Mechanics and Physics of Solids 1, 1, 1–18.

    Article  MathSciNet  Google Scholar 

  • Teng, X. and Wierzbicki, T. (2006). Evaluation of six fracture models in high velocity perforation. Engineering Fracture Mechanics 73, 12, 1653–1678.

    Article  Google Scholar 

  • Thomason, P. F. (1990). Ductile Fracture of Metals. Pergamon Press. UK.

    Google Scholar 

  • Weck, A. and Wilkinson, D. S. (2008). Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Materialia 56, 8, 1774–1784.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Huh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.J., Huh, H. Fracture loci of DP980 steel sheet for auto-body at intermediate strain rates. Int.J Automot. Technol. 18, 719–727 (2017). https://doi.org/10.1007/s12239-017-0071-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-017-0071-z

Key words

Navigation