Skip to main content
Log in

Innovative design optimization strategy for the automotive industry

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

In order to effectively solve modern automotive design problems including the results of nonlinear FEA and multi-body dynamics, a progressive meta-model based design optimization is presented. To reduce the number of initial sample points, two sampling methods are introduced. Then, for efficient and stable construction of meta-models, three metamodel methods are newly introduced which are numerically based on the singular value decomposition technique. To design a practical system considering manufacturing tolerances and optimizing multiple performances, a robust design optimization, 6-sigma constraints and multi-objective strategies are implemented when solving the approximate optimization problem constructed from the meta-models. Until the convergence criteria are satisfied, the initially developed meta-models are progressively improved by adding only one point that minimizes the approximate Lagrangian in the consecutive optimization iterations. Finally, one validation sample and four automotive applications are solved to show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\tilde z_p (x)\) :

the approximate model of the pth response

x x (x)β p :

polynomial type regression model of the pth response

s(x):

gaussian random process

r:

correlation matrix

r(xi,xj):

the correlation function between any two sample points

b(x):

radial basis function

P(x):

the min-max preference function for the multiple objectives of equation

BP :

the coefficient of regression model

Γ1 :

the design space

References

  • Adelman, H. M. and Haftka, R. T. (1992). Sensitivity analysis of discrete systems. in Kamat, P. (edn) Structural Optimization Status and Promise. Progress in Astronautics and Aeronautics 150, AIAA Inc. Washington, DC. 291–313.

    Google Scholar 

  • Bennett, J. A. and Lust, R. V. (1990). Conservative methods for structural optimization. AIAA J. 28,8, 1491–1496.

    Article  Google Scholar 

  • Bennett, J. A. and Nelson, M. F. (1979). An optimization capability for automotive structure. SAE Trans., 88, 3236–3243.

    Google Scholar 

  • Bennett, J. A., Botkin, M. E., Koromilas, C., Lust, R. V., Neal, M. O., Wang, J. T. and Zwiers, R. I. (1997). A multidisciplinary framework for preliminary vehicle analysis and design. Alexandrov, N. M. and Hussaini, N. Y. (edn) Multidisciplinary Design Optimization: State of Art, SIAM, Philadelphia, 3–21.

    Google Scholar 

  • Botkin, M. E., Lust, R. V., Song, J. O., Yang, R. J. and Katmik, R. B. (1987). Structural sizing optimization using an external finite element program. Proc. 28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conf. — Part 2A Monterey, CA, 513–521.

    Google Scholar 

  • Cassis, J. H. and Schmit, L. A. (1976). Optimum structural design with dynamic constraints. ASCE, 10, 2053–2071.

    Google Scholar 

  • Draper, N. R. (1985). Small composite design. Technometrics 27,2, 173–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Duysinx, P. and Fleury, C. (1992). Optimization softwares: View from Europe. in Kamat, P. (edn) Structural Optimization Status and Promise. Progress in Astronautics and Aeronautics, 150, AIAA Inc. Washington, DC. 807–847.

    Google Scholar 

  • Fadel, G. M., Riley, M. F. and Bartheley, J. F. M. (1990). Two-point exponentional approximation method for structural optimization. Structural Optimization 2,2, 117–124.

    Article  Google Scholar 

  • Fleury, C. and Braibant, V. (1986). Structural optimization: A new dual method using mixed variables. Int. J. Numer. Meth. Engng., 23, 409–428.

    Article  MATH  MathSciNet  Google Scholar 

  • FunctionBay (2013). AutoDesign User’s Guide in RecurDyn Version 8.1 User’s Manual. FunctionBay Inc. Korea.

    Google Scholar 

  • Hartely, H. O. (1959). Small composite design for quadratic response surface. Biometrics, 15, 611–624.

    Article  MathSciNet  Google Scholar 

  • Hong, K. J., Kim, M. S. and Choi, D. H. (2001). Efficient approximation method for constructing quadratic response surface model. KSME Int. J. 15,7, 875–888.

    Google Scholar 

  • Heo, S. J., Kang, D. O., Lee, J. H., Kim, I. H. and Darwish, S. M. H. (2013). Shape optimization of lower control arm considering multi-disciplinary constraint condition by using progress meta-model method. Int. J. Automotive Technology 14,3, 499–505.

    Article  Google Scholar 

  • IDO (2013). EasyDesign Version 3.4 User’s Manual. Institute of Design Optimization Inc. Korea.

    Google Scholar 

  • Jin, R., Chen, W. and Simpson, T. W. (2001). Comparative studies of metamodeling techniques under multiple modeling criteria. Struct. Multidisc. Optim., 23, 1–13.

    Article  Google Scholar 

  • Johnson, E. H. (1992). Tools for structural optimization. in Kamat, P. (edn) Structural Optimization Status and Promise. Progress in Astronautics and Aeronautics, 150, AIAA Inc. Washington, DC. 851–862.

    Google Scholar 

  • Kang, D. O., Heo, S. J., Kim, M. S., Choi, W. C. and Kim, I. H. (2012). Robust design optimization of suspension system by using target cascading method. Int. J. Automotive Technology 13,1, 109–122.

    Article  Google Scholar 

  • Kim, M. S. (2004). B-INOPL Version 3.1 User’s Manual. Institute of Design optimization Inc. Korea.

    Google Scholar 

  • Kim, M. S. (2006). F-INOPL Version 3.1 User’s Manual. Institute of Design optimization Inc. Korea.

    Google Scholar 

  • Kim, M. S. (2012). E-INOPL Version 6.0 User’s Manual. Institute of Design optimization Inc. Korea.

    Google Scholar 

  • Kim, B. J., Kim, M. S. and Heo, S. J. (2005). Aluminum space frame B.I.W. optimization considering multidisciplinary design constraints. Int. J. Automotive Technology 6,6, 635–641.

    Google Scholar 

  • Kim, M. S. and Choi, D. H. (1995). Development of an efficient line search method by using the sequential polynomial approximation. Trans. KSME 19,2, 433–442.

    Google Scholar 

  • Kim, M. S. and Choi, D. H. (1998). Min-max dynamic response optimization of mechanical systems using approximate augmented lagrangian. Int. J. Numer. Mech. Engng., 44, 549–564.

    Article  Google Scholar 

  • Kim, M. S. and Choi, D. H. (2000). A new penalty parameter update rule in the augmented lagrange multiplier method for dynamic response optimization. KSME Int. J. 14,10, 1122–1130.

    Google Scholar 

  • Kim, M. S., Choi, D. H. and Hwang, Y. (2002). Composite non-smooth optimization using the approximate generalized gradient. J. Optimization Theory and Applications 112,1, 145–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, M. S., Hong, K. J. and Choi, D. H. (2002). Augmented D-optimal design for effective response surface modeling and optimization. KSME Int. J. 16,2, 203–210.

    Google Scholar 

  • Kim, M. S. and Heo, S. (2003). Conservative quadratic rsm combined with incomplete small composite design and conservative least square fitting. KSME Int. J. 17,5, 698–707.

    Google Scholar 

  • Kim, M. S., Kim, C. W., Kim, J. H. and Choi, J. H. (2008). Efficient optimization method for noisy responses of mechanical systems. Proc. IMechE. Part C: J. Mechanical Engineering Science, 222, 2433–2439.

    Article  Google Scholar 

  • Kurtaran, H., Eskandarian, A., Marzougui, D. and Bedewi, N. E. (2002). Crashworthiness design optimization using successive response surface approximations. Computational Mechanics, 29, 409–421.

    Article  MATH  Google Scholar 

  • LSTC (2004). LS-OPT Version 2.2 User’s Manual. Livermore Software Technology Corporation. Livermore. California. USA.

    Google Scholar 

  • Osyczka, A. (1984). Multicriterion Optimization in Engineering with FORTRAN Programs. Ellis Horwood Limited. Chichester.

    Google Scholar 

  • Pidotech (2013). PIAnO User’s Manual. Pidotech, Inc. Seoul. Korea.

    Google Scholar 

  • Prasad, B. (1984). Novel concepts for constraint treatments and approximations in efficient structural synthesis. AIAA J. 22,7, 957–966.

    Article  MATH  Google Scholar 

  • Sacks, J., Schiller, S. B. and Welch, W. J. (1989) Designs for computer experiments. Technometrics, 31, 41–47.

    Article  MathSciNet  Google Scholar 

  • Saliby, E. (1990). Descriptive sampling: A better approach to Monte Carlo simulation. J. Operational Research Society 41,12, 1133–1142.

    Google Scholar 

  • Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling. Technometrics 29,2, 143–151.

    Article  MATH  MathSciNet  Google Scholar 

  • Schmit, L. A. (1960). Structural design by systematic synthesis. Proc. 2nd Conf. Electronic Computation, ASCE, New York, 105–122.

    Google Scholar 

  • Schmit, L. A. and Farshi, B. (1974). Some approximation concepts for structural synthesis. AIAA J. 12,5, 692–699.

    Article  Google Scholar 

  • Schmit, L. A. and Fleury, C. (1979). Structural synthesis by combining approximation concepts and dual methods. AIAA J. 18,10, 1252–1260.

    Article  MathSciNet  Google Scholar 

  • Schmit, L. A. and Miura, H. (1976). A new structural analysis/synthesis capability — ACCESS 1. AIAA J. 14,5, 661–671.

    Article  Google Scholar 

  • Simpson, T. W., Peplinski, J. D., Koch, P. N. and Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17, 129–150.

    Article  MATH  Google Scholar 

  • Sobieszczanski-Sobieski, J., Kodiyalam, S. and Yang, R. Y. (2001). Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash. Struct. Multidisc. Optim., 22, 295–306.

    Article  Google Scholar 

  • Svanberg, K. (1987). The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Meth. Engng., 24, 409–428.

    Article  MathSciNet  Google Scholar 

  • Starnes, J. H. Jr. and Haftka, R. T. (1979). Preliminary design for composite wings for buckling, stress and displacement constraints. J. Aircraft, 16, 564–570.

    Article  Google Scholar 

  • Storaasli, O. O. and Sobieszczanski, J. (1974). On the accuracy of the Taylor approximation for structural resizing. AIAA J. 12,5, 231–233.

    Google Scholar 

  • Vanderplaats, G. N. (1982). Structural optimization- past, present, and future. AIAA J. 20,7, 992–1000.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, J. G. and Liu, G. R. (2002). A point interpolation meshless method based on radial basis functions. Int. J. Numerical Methods in Engineering, 54, 1623–1648.

    Article  MATH  Google Scholar 

  • Wang, L. and Grandhi, R. V. (1995). Improved two-point function approximation for design optimization. AIAA J. 32,9, 1720–1727.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Heo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.S., Kang, D.O. & Heo, S.J. Innovative design optimization strategy for the automotive industry. Int.J Automot. Technol. 15, 291–301 (2014). https://doi.org/10.1007/s12239-014-0030-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-014-0030-x

Key Words

Navigation