Skip to main content
Log in

Spatial Distribution and Physical Controls of the Spring Algal Blooming Off the Changjiang River Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The Changjiang River discharges huge amounts of nutrients, which cause frequent harmful algal blooms off its estuary. By analyzing historical and in situ observational data, this study aimed to determine the distribution and physical controls of these blooms. The results indicated that phytoplankton bloomed within the 30–50 m isobaths south of the Changjiang River mouth, with several high-value centers. South of the river mouth, the river plume front propagated along the coast as bottom-trapped river plume, which reached the bottom along the 25–30 m isobaths. The algae bloomed between the locations of the bottom and surface fronts. The surface front determined the seaward limit of the nutrient-rich river-influenced water and set the outer boundary of algal blooming; the latter separated the stratified (hence less turbid) offshore surface water from the well-mixed thus turbid nearshore surface water, forming the shoreward limit of the algal blooming due to high turbidity. The surface plume front was relatively unstable compared with the bottom. The surface plume front relaxes around the bathymetric irregularities, which enlarges the distance between the plume’s surface and bottom fronts, providing a larger area favorable to algal blooming. Consequently, several high chlorophyll-a centers developed around the bathymetric irregularities. East and northeast of the river mouth, the river plume floated above ambient seawater as a surface-trapped river plume. A subsurface chlorophyll-a maximum was observed above the pycnocline in the far-field plume area, which descended gradually to ~ 10 m in the offshore direction. The associated dynamical mechanism was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso-Rodriguez, R., and J.L. Ochoa. 2004. Hydrology of winter-spring “red tides” in Bahia de Mazatlan, Sinaloa, Mexico. Harmful Algae 3 (2): 163–171.

    Article  Google Scholar 

  • Anderson, D.M., T.J. Alpermann, A.D. Cembella, Y. Collos, E. Masseret, and M. Montresor. 2012. The globally distributed genus Alexandrium: multifaceted roles inmarine ecosystems and impacts on human health. Harmful Algae 14: 10–35.

    Article  Google Scholar 

  • Baek, S.H., S. Shimode, and T. Kikuchi. 2008. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay Japan: the role of temperature, light intensity and photoperiod. Harmful Algae 7 (2): 163–173.

    Article  Google Scholar 

  • Balch, W.M. 1981. An apparent lunar tidal cycle of phytoplankton blooming and community succession in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology 55 (1): 65–77.

    Article  Google Scholar 

  • Beardsley, R., R. Limeburner, H. Yu, and G. Cannon. 1985. Discharge of the Changjiang (Yangtze river) into the East China Sea. Continental Shelf Research 4 (1–2): 57–76.

    Article  Google Scholar 

  • Blasco, D. 1977. Red tide in the upwelling region of Baja California. Limnology and Oceanography 22 (2): 255–263.

    Article  CAS  Google Scholar 

  • Brink, K., and S. Lentz. 2010. Buoyancy arrest and bottom Ekman transport. Part I: steady flow. Journal of Physical Oceanography 40 (4): 621–635.

    Article  Google Scholar 

  • Burkholder, J.M., P.M. Glibert, and H.M. Skelton. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8 (1): 77–93.

    Article  CAS  Google Scholar 

  • Chai, C., Z. Yu, X. Song, and X. Cao. 2006. The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent East China Sea, China. Hydrobiologia 563 (1): 313–328.

    Article  CAS  Google Scholar 

  • Chang, P.H., and A. Isobe. 2003. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. Journal of Geophysical Research: Oceans 108 (C9): C00B16.

    Article  Google Scholar 

  • Chang, N.N., J.C. Shiao, and G.C. Gong. 2012. Diversity of demersal fish in the East China Sea: implication of eutrophication and fishery. Continental Shelf Research 47: 42–54.

    Article  Google Scholar 

  • Chapman, D.C. 2003. Separation of an advectively trapped buoyancy current at a bathymetric bend. Journal of Physical Oceanography 33 (5): 1108–1121.

    Article  Google Scholar 

  • Chen, C., P. Xue, P. Ding, R.C. Beardsley, Q. Xu, X. Mao, G. Gao, J. Qi, C. Li, H. Lin, G. Cowles, and M. Shi. 2008. Physical mechanisms for the offshore detachment of the Changjiang diluted water in the East China Sea. Journal of Geophysical Research: Oceans 113 (C2): 122–125.

    Google Scholar 

  • Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7 (11): 1367–1381.

    Article  Google Scholar 

  • Combes, V., F. Chenillat, E. Di Lorenzo, P. Rivière, M.D. Ohman, and S.J. Bograd. 2013. Cross-shore transport variability in the California current: Ekman upwelling vs. eddy dynamics. Progress in Oceanography 109: 78–89.

    Article  Google Scholar 

  • Cullen, J.J., P.J. Franks, D.M. Karl, and A.L. Longhurst. 2002. Physical influences on marine ecosystem dynamics. The Sea 12: 297–336.

    Google Scholar 

  • Deng, B., H. Wu, S. Yang, and J. Zhang. 2017. Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River estuary. Estuarine Coastal & Shelf Science 190 (5): 1–10.

    Article  Google Scholar 

  • Fong, D.A., and W.R. Geyer. 2001. Response of a river plume during an upwelling favorable wind event. Journal of Geophysical Research: Oceans 106 (C1): 1067–1084.

    Article  Google Scholar 

  • Franks, P.J. 1992. Phytoplankton blooms at fronts: patterns, scales, and physical forcing mechanisms. Reviews in Aquatic Sciences 6 (2): 121–137.

    Google Scholar 

  • Franks, P.J., and D.M. Anderson. 1992. Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine. Marine Biology 112 (1): 153–164.

    Article  Google Scholar 

  • Gallegos, C.L., and T.E. Jordan. 2002. Impact of the spring 2000 phytoplankton bloom in Chesapeake Bay on optical properties and light penetration in the Rhode River, Maryland. Estuaries 25 (4): 508–518.

    Article  Google Scholar 

  • Gao, L., D.J. Li, and P.X. Ding. 2009. Quasi-simultaneous observation of currents, salinity and nutrients in the Changjiang (Yangtze River) plume on the tidal timescale. Journal of Marine Systems 75 (1): 265–279.

    Article  Google Scholar 

  • Gao, L., D. Li, and Y. Zhang. 2012. Nutrients and particulate organic matter discharged by the Changjiang (Yangtze River): seasonal variations and temporal trends. Journal of Geophysical Research: Biogeosciences 117 (G4): 4001.

    Article  CAS  Google Scholar 

  • Garrett, C. 1997. Flow separation in the ocean. Proceedings of the 8th ‘Aha Huliko’a Hawaiian Winter Workshop, 119-124.

  • Gobler, C.J., A. Burson, F. Koch, Y. Tang, and M.R. Mulholland. 2012. The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae 17: 64–74.

    Article  CAS  Google Scholar 

  • Guan, B., and G. Fang. 2006. Winter counter-wind currents off the southeastern China coast: a review. Journal of Oceanography 62 (1): 1–24.

    Article  Google Scholar 

  • Guo, X., X.H. Zhu, Q.S. Wu, and D. Huang. 2012. The Kuroshio nutrient stream and its temporal variation in the East China Sea. Journal of Geophysical Research: Oceans 117 (C1): 026.

    Article  CAS  Google Scholar 

  • Heisler, J., P.M. Glibert, J.M. Burkholder, D.M. Anderson, W. Cochlan, W.C. Dennison, Q. Dortch, C.J. Gobler, C.A. Heil, E. Humphries, A. Lewitus, R. Magnien, H.G. Marshall, K. Sellner, D.A. Stockwell, D.K. Stoecker, and M. Suddleson. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8 (1): 3–13.

    Article  CAS  Google Scholar 

  • Horner-Devine, A.R., R.D. Hetland, and D.G. Macdonald. 2015. Mixing and transport in coastal river plumes. Annual Review of Fluid Mechanics 47 (1): 569–594.

    Article  Google Scholar 

  • Huang, B., L. Ou, X. Wang, W. Huo, R. Li, H. Hong, M. Zhu, and Y. Qi. 2007. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquatic Microbial Ecology 49 (2): 195–206.

    Article  Google Scholar 

  • Ignatiades, L., O. Gotsis-Skretas, and A. Metaxatos. 2007. Field and culture studies on the ecophysiology of the toxic dinoflagellate Alexandrium minutum (Halim) present in Greek coastal waters. Harmful Algae 6 (2): 153–165.

    Article  Google Scholar 

  • Intergovernmental Oceanographic Commission. 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements.

  • Jeong, H.J., Y. Du Yoo, J.S. Kim, K.A. Seong, N.S. Kang, and T.H. Kim. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45 (2): 65–91.

    Article  CAS  Google Scholar 

  • Jeong, H.J., Y.D. Yoo, K.H. Lee, T.H. Kim, K.A. Seong, N.S. Kang, S.Y. Lee, J.S. Kim, S. Kim, and W.H. Yih. 2013. Red tides in Masan Bay Korea in 2004–2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30S: S75–S88.

    Article  Google Scholar 

  • Jeong, H.J., A.S. Lim, P.J. Franks, K.H. Lee, J.H. Kim, N.S. Kang, M.J. Lee, S.H. Jang, S.Y. Lee, E.Y. Yoon, J.Y. Park, Y.D. Yoo, K.A. Seong, J.E. Kwon, and T.Y. Jang. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47: 97–115.

    Article  Google Scholar 

  • Jiang, Z., J. Chen, F. Zhou, L. Shou, Q. Chen, B. Tao, X. Yan, and K. Wang. 2015. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Continental Shelf Research 101: 71–84.

    Article  Google Scholar 

  • Kang, N.S., K.H. Lee, H.J. Jeong, Y.D. Yoo, K.A. Seong, E. Potvin, Y.J. Hwang, and E.Y. Hwang. 2013. Red tides in Shiwha Bay, western Korea: a huge dike and tidal power plant established in a semi-enclosed embayment system. Harmful Algae 30S: S114–S130.

    Article  Google Scholar 

  • Lee, K., T. Matsuno, T. Endoh, J. Ishizaka, Y. Zhu, S. Takeda, and C. Sukigara. 2016. A role of vertical mixing on nutrient supply into the subsurface chlorophyll maximum in the shelf region of the East China Sea. Continental Shelf Research 143: 139–150.

    Article  Google Scholar 

  • Lewitus, A.J., R.A. Horner, D.A. Caron, E. Garcia-Mendoza, B.M. Hickey, M. Hunter, D.D. Huppert, R.M. Kudela, G.W. Langlois, J.L. Largier, E.J. Lessard, R. RaLonde, J.E.J. Rensel, P.G. Strutton, V.L. Trainer, and J.F. Tweddle. 2012. Harmful algal blooms along the North American west coast region: history, trends, causes, and impacts. Harmful Algae 19: 133–159.

    Article  Google Scholar 

  • Li, H.M., H.J. Tang, X.Y. Shi, C.S. Zhang, and X.L. Wang. 2014. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae 39 (39): 92–101.

    Article  CAS  Google Scholar 

  • Lian, E., S. Yang, H. Wu, C. Yang, C. Li, and J.T. Liu. 2016. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf. Journal of Geophysical Research: Oceans 121 (7): 4790–4803.

    Google Scholar 

  • Liang, Y. 2012. China’s red tide disaster survey and evaluation (1933–2009). Beijing: Ocean Press (In Chinese).

    Google Scholar 

  • Lin, J.N., T. Yan, Q.C. Zhang, Y.F. Wang, Q. Liu, and M.J. Zhou. 2014. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Marine Pollution Bulletin 88 (1-2): 302–310.

    Article  CAS  Google Scholar 

  • Lin, J.N., J.J. Song, T. Yan, Q.C. Zhang, and M.J. Zhou. 2015. Large-scale dinoflagellate bloom species Prorocentrum donghaiense and Karenia mikimotoi reduce the survival and reproduction of copepod Calanus sinicus. Journal of the Marine Biological Association of the United Kingdom 95 (6): 1071–1079.

    Article  Google Scholar 

  • Lu, D., and J. Goebel. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chinese Journal of Pceanology and Limnology 19 (4): 337–344.

    Article  Google Scholar 

  • Lu, D., J. Goebel, Y. Qi, J. Zou, X. Han, Y. Gao, and Y. Li. 2005. Morphological and genetic study of Prorocentrum donghaiense, Lu from the East China Sea, and comparison with some related Prorocentrum, species. Harmful Algae 4 (3): 493–505.

    Article  CAS  Google Scholar 

  • Macdonald, D.G., and W.R. Geyer. 2004. Turbulent energy production and entrainment at a highly stratified estuarine front. Journal of Geophysical Research: Oceans 109 (C5): 004.

    Article  Google Scholar 

  • Mao, H., Z. Gan, and S. Lam. 1963. Preliminary study on the Changjiang diluted water and its mixing natures. Oceanlogia Et Limnologia Sinica 5 (3): 183–206 (In Chinese).

    Google Scholar 

  • Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1 (4): 493–509.

    Google Scholar 

  • Moon, J.H., N. Hirose, J.H. Yoon, and I.C. Pang. 2010. Offshore detachment process of the low-salinity water around Changjiang Bank in the East China Sea. Journal of Physical Oceanography 40 (5): 1035–1053.

    Article  Google Scholar 

  • Ou, L., D. Wang, B. Huang, H. Hong, Y. Qi, and S. Lu. 2008. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. Journal of Plankton Research 30 (9): 1007–1017.

    Article  CAS  Google Scholar 

  • Ou, L., B. Huang, H. Hong, Y. Qi, and S. Lu. 2010. Comparative alkaline phosphatase characteristics of the algal bloom dinoflagellates Prorocentrum donghaiense and Alexandrium catenella, and the diatom Skeletonema costatum. Journal of Phycology 46 (2): 260–265.

    Article  Google Scholar 

  • Pingree, R.D., P.R. Pugh, P.M. Holligan, and G.R. Forster. 1975. Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English Channel. Nature 258 (5537): 672–677.

    Article  Google Scholar 

  • Pingree, R.D., P.M. Holligan, and G.T. Mardell. 1978. The effects of vertical stability on phytoplankton distributions in the summer on the northwest European Shelf. Deep Sea Research 25 (11): 1011–1028.

    Article  Google Scholar 

  • Shen, L., H. Xu, X. Guo, and M. Li. 2011. Characteristics of large-scale harmful algal blooms (HABs) in the Yangtze River estuary and the adjacent East China Sea (ECS) from 2000 to 2010. Journal of Environmental Protection 02 (10): 1285–1294.

    Article  Google Scholar 

  • Smayda, T.J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42 (5part2): 1137–1153.

    Article  Google Scholar 

  • Smayda, T.J. 2010. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour. Progress in Oceanography 85 (1–2): 71–91.

    Article  Google Scholar 

  • Sukigara, C., Y. Mino, S.C. Tripathy, J. Ishizaka, and T. Matsuno. 2017. Impacts of the Changjiang diluted water on sinking processes of particulate organic matters in the East China Sea. Continental Shelf Research 151: 84–93.

    Article  Google Scholar 

  • Sun, J., and D. Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25 (11): 1331–1346.

    Article  Google Scholar 

  • Sun, B.Y., X.L. Wang, Y.B. Li, C.Y. Wang, A.J. Wang, S.K. Liang, and C.S. Zhang. 2008. Effects of irradiance on blooms of the dinoflagellate Prorocentrum donghaiense Lu in the coastal area in East China Sea. Environmental Science 29 (2): 362–367 (In Chinese).

    Google Scholar 

  • Tang, D.L., B.P. Di, G. Wei, I.H. Ni, I.S. Oh, and S.F. Wang. 2006. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia 568 (1): 245–253.

    Article  Google Scholar 

  • Thorpe, S.A. 1973. Experiments on instability and turbulence in a stratified shear flow. Journal of Fluid Mechanics 61 (4): 731–751.

    Article  Google Scholar 

  • Thorpe, S.A. 1977. Turbulence and mixing in a Scottish Loch, London. Philosophical Transactions of the Royal Society of London 286 (1334): 125–181.

    Article  Google Scholar 

  • Tseng, Y.-F., J. Lin, M. Dai, and S.-J. Kao. 2014. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River. Biogeosciences 11 (2): 409–423.

    Article  Google Scholar 

  • Wang, B. 2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: history and perspective. Estuarine, Coastal and Shelf Science 69 (3): 471–477.

    Article  Google Scholar 

  • Wang, J., and X. Huang. 2003. Ecological characteristics of Prorocentrum dentatum and the cause of harmful algal bloom formation in China Sea. The Journal of Applied Ecology 14 (7): 1065–2069 (In Chinese).

    CAS  Google Scholar 

  • Wang, J.H., and J.Y. Wu. 2009. Occurrence and potential risks of harmful algal blooms in the East China Sea. Science of the Total Environment 407 (13): 4012–4021.

    Article  CAS  Google Scholar 

  • Wang, B., X. Wang, and R. Zhan. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science 58 (1): 127–136.

    Article  CAS  Google Scholar 

  • Wang, H., M. Dai, J. Liu, S.J. Kao, C. Zhang, W.J. Cai, G. Wang, W. Qian, M. Zhao, and Z. Sun. 2016. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary. Environmental Science & Technology 50 (5): 2255–2263.

    Article  CAS  Google Scholar 

  • Wu, H. 2015. Cross-shelf penetrating fronts: a response of buoyant coastal water to ambient pycnocline undulation. Journal of Geophysical Research: Oceans 120 (7): 5101–5119.

    Google Scholar 

  • Wu, T., and H. Wu. 2018. Tidal mixing sustains a bottom-trapped river plume and buoyant coastal current on an energetic continental shelf. Journal of Geophysical Research: Oceans 123 (11): 8026–8051.

    Google Scholar 

  • Wu, H., J. Zhu, J. Shen, and H. Wang. 2011. Tidal modulation on the Changjiang River plume in summer. Journal of Geophysical Research: Oceans 116: C08017.

    Article  CAS  Google Scholar 

  • Wu, H., B. Deng, R. Yuan, J. Hu, J. Gu, F. Shen, J. Zhu, and J. Zhang. 2013. De-tiding measurement on transport of the Changjiang-derived buoyant coastal current. Journal of Physical Oceanography 43 (11): 2388–2399.

    Article  Google Scholar 

  • Wu, H., J. Shen, J. Zhu, and L. Li. 2014. Characteristics of the Changjiang plume and its extension along the Jiangsu Coast. Continental Shelf Research 76: 108–123.

    Article  Google Scholar 

  • Wu, H., J. Gu, and P. Zhu. 2018a. Winter counter-wind transport in the inner southwestern Yellow Sea. Journal of Geophysical Research: Oceans 123 (1): 411–436.

    Google Scholar 

  • Wu, H., T. Wu, and M. Bai. 2018b. Mega estuarine constructions modulate the Changjiang River plume extension in adjacent seas. Estuaries & Coasts 41 (5): 1234–1252.

    Article  Google Scholar 

  • Xuan, J.L., D. Huang, F. Zhou, X.H. Zhu, and X. Fan. 2012. The role of wind on the detachment of low salinity water in the Changjiang Estuary in summer. Journal of Geophysical Research: Oceans 117: C10004.

    Article  Google Scholar 

  • Yang, Z., H. Wang, Y. Saito, J.D. Milliman, K. Xu, S. Qiao, and G. Shi. 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research 42 (4): W04407.

    Article  Google Scholar 

  • Yang, D., B. Yin, Z. Liu, and X. Feng. 2011. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer. Journal of Geophysical Research: Oceans 116 (C5): 015.

    Article  Google Scholar 

  • Yankovsky, A.E., and D.C. Chapman. 1997. A simple theory for the fate of buoyant coastal discharges. Journal of Physical Oceanography 27 (27): 1386–1401.

    Article  Google Scholar 

  • Zhang, Y., L. Zhu, X. Zeng, and Y. Lin. 2004. The biogeochemical cycling of phosphorus in the upper ocean of the East China Sea. Estuarine, Coastal and Shelf Science 60 (3): 369–379.

    Article  CAS  Google Scholar 

  • Zhang, J., S.M. Liu, J.L. Ren, Y. Wu, and G.L. Zhang. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography 74 (4): 449–478.

    Article  Google Scholar 

  • Zhang, Q.C., J.J. Song, R.C. Yu, T. Yan, Y.F. Wang, F.Z. Kong, and M.J. Zhou. 2013. Roles of mixotrophy in blooms of different dinoflagellates: implications from the growth experiment. Harmful Algae 30: 10–26.

    Article  CAS  Google Scholar 

  • Zhou, M.J., and M.Y. Zhu. 2006. Progress of the project “Ecology and Oceanography of Harmful Algal Bloom in China”. Advances in Earth Science 21: 673–679 (in Chinese).

    Google Scholar 

  • Zhou, M.J., Z.L. Shen, and R.C. Yu. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research 28 (12): 1483–1489.

    Article  Google Scholar 

  • Zhu, J., C. Chen, P. Ding, C. Li, and H. Lin. 2004. Does the Taiwan warm current exist in winter? Geophysical Research Letters 31 (12): 261–268.

    Article  Google Scholar 

  • Zhu, Z.Y., W.M. Ng, S.M. Liu, J. Zhang, J.C. Chen, and Y. Wu. 2009. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science 84 (3): 393–401.

    Article  CAS  Google Scholar 

  • Zhu, Z.Y., Y. Wu, J. Zhang, J.Z. Du, and G.S. Zhang. 2014. Reconstruction of anthropogenic eutrophication in the region off the Changjiang Estuary and central Yellow Sea: from decades to centuries. Continental Shelf Research 72 (1): 152–162.

    Article  Google Scholar 

Download references

Acknowledgements

XSL acknowledges the support from Jiangsu Chair Professorship and the 2015 Jiangsu Program of Entrepreneurship and Innovation Group. The data are available upon formal request to the correspondence author. The authors would express sincere thanks to Dr. Yeping Yuan from Zhejiang University for her help in calculating the Thorpe scale and to the crew of R/V Zhehaike I for their assistance in sampling the data. The constructive comments from three anonymous reviewers are greatly appreciated.

Funding

This study was jointly supported by the National Natural Science Foundation of China (Grant No. 41576088 and 41776101), the National Key Research and Development Program of China (Grant No. 2016YFC1402202), and the research foundation of State Key Laboratory of Estuarine and Coastal Research (Grant No. 2015KYYW04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wu.

Additional information

Communicated by Charles Simenstad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, H., Gao, L. et al. Spatial Distribution and Physical Controls of the Spring Algal Blooming Off the Changjiang River Estuary. Estuaries and Coasts 42, 1066–1083 (2019). https://doi.org/10.1007/s12237-019-00545-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00545-x

Keywords

Navigation