Skip to main content

Advertisement

Log in

Contribution of Mangroves and Salt Marshes to Nature-Based Mitigation of Coastal Flood Risks in Major Deltas of the World

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Nature-based solutions are rapidly gaining interest in the face of global change and increasing flood risks. While assessments of flood risk mitigation by coastal ecosystems are mainly restricted to local scales, our study assesses the contribution of salt marshes and mangroves to nature-based storm surge mitigation in 11 large deltas around the world. We present a relatively simple GIS model that, based on globally available input data, provides an estimation of the tidal wetland’s capacity of risk mitigation at a regional scale. It shows the high potential of nature-based solutions, as tidal wetlands, to provide storm surge mitigation to more than 80% of the flood-exposed land area for 4 of the 11 deltas and to more than 70% of the flood-exposed population for 3 deltas. The magnitude of the nature-based mitigation, estimated as the length of the storm surge pathway crossing through tidal wetlands, was found to be significantly correlated to the total wetland area within a delta. This highlights the importance of conserving extensive continuous tidal wetlands as a nature-based approach to mitigate flood risks. Our analysis further reveals that deltas with limited historical wetland reclamation and therefore large remaining wetlands, such as the Mississippi, the Niger, and part of the Ganges-Brahmaputra deltas, benefit from investing in the conservation of their vast wetlands, while deltas with extensive historical wetland reclamation, such as the Yangtze and Rhine deltas, may improve the sustainability of flood protection programs by combining existing hard engineering with new nature-based solutions through restoration of former wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arkema, Katie K., Greg Guannel, Gregory Verutes, Spencer a. Wood, Anne Guerry, Mary Ruckelshaus, Peter Kareiva, Martin Lacayo, and Jessica M. Silver. 2013. Coastal habitats shield people and property from sea-level rise and storms. Nature Climate Change 3 (10): 913–918. https://doi.org/10.1038/nclimate1944.

    Article  Google Scholar 

  • Barbier, Edward B., Ioannis Y. Georgiou, Brian Enchelmeyer, and Denise J. Reed. 2013. The value of wetlands in protecting Southeast Louisiana from hurricane storm surges. PLoS One 8 (3): 1–6. https://doi.org/10.1371/journal.pone.0058715.

    Article  CAS  Google Scholar 

  • Bengtsson, Lennart, Kevin I. Hodges, and Erich Roeckner. 2006. Storm tracks and climate change. Journal of Climate 19 (15): 3518–3543. https://doi.org/10.1175/JCLI3815.1.

    Article  Google Scholar 

  • Bright, Eddie A, Phil R Coleman, Amy N Rose, and Marie L Urban. 2013. LandScan 2013. Oak Ridge, TN: Oak Ridge National Laboratory SE - July 1, 2012.

  • Cheong, So-Min, Brian Silliman, Poh Poh Wong, Bregje van Wesenbeeck, Choong-Ki Kim, and Greg Guannel. 2013. Coastal adaptation with ecological engineering. Nature Climate Change 3 (9): 787–791. https://doi.org/10.1038/nclimate1854.

    Article  Google Scholar 

  • Coleman, J.M., and O.K Huh. 2004. Major world deltas: A perspective from space. Coastal Studies Institute, and Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA.

  • Costanza, Robert, Octavio Pérez-Maqueo, M. Luisa Martinez, Paul Sutton, Sharolyn J. Anderson, and Kenneth Mulder. 2008. The value of coastal wetlands for hurricane protection. Ambio 37 (4): 241–248. https://doi.org/10.1579/0044-7447(2008)37[241:tvocwf]2.0.co;2.

  • Das, Saudamini, and Jeffrey R. Vincent. 2009. Mangroves protected villages and reduced death toll during Indian super cyclone. Proceedings of the National Academy of Sciences of the United States of America 106 (18): 7357–7360. https://doi.org/10.1073/pnas.0810440106.

    Article  CAS  Google Scholar 

  • Dasgupta, Susmita, Benoit Laplante, Siobhan Murray, and David Wheeler. 2011. Exposure of developing countries to sea-level rise and storm surges. Climatic Change 106 (4): 567–579. https://doi.org/10.1007/s10584-010-9959-6.

    Article  CAS  Google Scholar 

  • Day, John W., Donald F. Boesch, Ellis J. Clairain, G. Paul Kemp, Shirley B. Laska, William J. Mitsch, Kenneth Orth, et al. 2007. Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science (New York, N.Y.) 315 (5819): 1679–1684. https://doi.org/10.1126/science.1137030.

    Article  CAS  Google Scholar 

  • Dobson, Jerome E., Edward A. Bright, Phillip R. Coleman, Richard C. Durfee, and Brian A. Worley. 2000. LandScan: a global population database for estimating populations at risk. Photogrammetric Engineering and Remote Sensing 66: 849–857.

    Google Scholar 

  • Duarte, Carlos M., Iñigo J. Losada, Iris E. Hendriks, Inés Mazarrasa, and Núria Marbà. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3 (11): 961–968. https://doi.org/10.1038/nclimate1970.

    Article  CAS  Google Scholar 

  • Ericson, J., C. Vorosmarty, S. Dingman, L. Ward, and M. Meybeck. 2006. Effective sea-level rise and deltas: causes of change and human dimension implications. Global and Planetary Change 50 (1-2): 63–82. https://doi.org/10.1016/j.gloplacha.2005.07.004.

    Article  Google Scholar 

  • Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. In FGDC-STD-004-2013. Second Edition. Washington D.C.: Wetlands subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service.

  • Gedan, Keryn B., Matthew L. Kirwan, Eric Wolanski, Edward B. Barbier, and Brian R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change 106 (1): 7–29. https://doi.org/10.1007/s10584-010-0003-7.

    Article  Google Scholar 

  • Giosan, Liviu, James P.M. Syvitski, Stefan Constantinescu, and John Day. 2014. Protect the world’s deltas. Nature 516: 31–33.

    Article  CAS  Google Scholar 

  • Giri, C., E. Ochieng, L.L.L.L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, N. Duke, and N. Duke. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20 (1): 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x.

    Article  Google Scholar 

  • Haddad, Jana, Seth Lawler, and Celso M. Ferreira. 2016. Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework. Natural Hazards 80 (2): 839–861. https://doi.org/10.1007/s11069-015-2000-7.

    Article  Google Scholar 

  • Hallegatte, Stéphane, Colin Green, Robert J. Nicholls, and Jan Corfee-Morlot. 2013. Future flood losses in major coastal cities. Nature Climate Change 3 (9): 802–806. https://doi.org/10.1038/nclimate1979.

    Article  Google Scholar 

  • Heap, A, S Bryce, D Ryan, L Radke, C Smith, R Smith, P Harris, and D Heggie. 2001. Australian estuaries & coastal waterways: a geoscience perspective for improved and integrated resource management. In Australian Geological Survey Organisation.

  • Hinkel, Jochen, Daniel Lincke, Athanasios T. Vafeidis, Mahé Perrette, Robert James Nicholls, Richard S.J. Tol, Ben Marzeion, Xavier Fettweis, Cezar Ionescu, and Anders Levermann. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 111 (9): 3292–3297. https://doi.org/10.1073/pnas.1222469111.

    Article  CAS  Google Scholar 

  • Kirwan, Matthew L., Stijn Temmerman, Emily E. Skeehan, Glenn R. Guntenspergen, and Sergio Faghe. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260. https://doi.org/10.1038/nclimate2909.

    Article  Google Scholar 

  • Krauss, Ken W., Terry J. Thomas W. Doyle, Terry J. Thomas W. Doyle, Christopher M. Swarzenski, Andrew S. From, Richard H. Day, and William H. Conner. 2009. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29 (1): 142–149. https://doi.org/10.1672/07-232.1.

    Article  Google Scholar 

  • Lichter, Michal, Athanasios T. Vafeidis, Robert J. Nicholls, and Gunilla Kaiser. 2011. Exploring data-related uncertainties in analyses of land area and population in the “Low-Elevation Coastal Zone” (LECZ). Journal of Coastal Research 27 (4): 757–768. https://doi.org/10.2112/JCOASTRES-D-10-00072.1.

    Article  Google Scholar 

  • Liu, Huiqing, Keqi Zhang, Yuepeng Li, and Lian Xie. 2013. Numerical study of the sensitivity of mangroves in reducing storm surge and flooding to hurricane characteristics in southern Florida. Continental Shelf Research 64: 51–65. https://doi.org/10.1016/j.csr.2013.05.015.

    Article  Google Scholar 

  • Loder, N.M., J.L. Irish, M.a. Cialone, and T.V. Wamsley. 2009. Sensitivity of hurricane surge to morphological parameters of coastal wetlands. Estuarine, Coastal and Shelf Science 84 (4): 625–636. https://doi.org/10.1016/j.ecss.2009.07.036.

    Article  Google Scholar 

  • Lovelace, John K. 1994. Storm-tide elevations produced by Hurricane Andrew along the Louisiana Coast, August 25–27, 1992. U.S. Geological Survey Open-File Report 94–371. Prepared in cooperation with the Federal Emergency Management Agency.

  • Marsooli, Reza, Philip M. Orton, Nickitas Georgas, and Alan F. Blumberg. 2016. Three-dimensional hydrodynamic modeling of coastal flood mitigation by wetlands. Coastal Engineering 111: 83–94. https://doi.org/10.1016/j.coastaleng.2016.01.012.

    Article  Google Scholar 

  • McGee, Benton D., Burl B. Goree, Roland W. Tollett, Brenda K. Woodward, and Wade H. Kress. 2006. Hurrican Rita Surge Data, Southwestern Louisiana and Souteasthern Texas, September to November 2005. U.S. Geological Survey Data Series 220.

  • McGranahan, G., D. Balk, and B. Anderson. 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization 19 (1): 17–37. https://doi.org/10.1177/0956247807076960.

    Article  Google Scholar 

  • Mcivor, Anna, Tom Spencer, Iris Möller, and Mark Spalding. 2012. Storm surge reduction by mangroves. Natural Coastal Protection Series:35.

  • Mcowen, Chris, Lauren Weatherdon, Jan-Willem Bochove, Emma Sullivan, Simon Blyth, Christoph Zockler, Damon Stanwell-Smith, Naomi Kingston, Corinne Martin, Mark Spalding, and Steven Fletcher. 2017. A global map of saltmarshes. Biodiversity Data Journal 5: e11764. https://doi.org/10.3897/BDJ.5.e11764.

    Article  Google Scholar 

  • Muis, Sanne, Martin Verlaan, Hessel C. Winsemius, Jeroen C.J.H. Aerts, and Philip J. Ward. 2016. A global reanalysis of storm surges and extreme sea levels. Nature Communications 7: 11969. https://doi.org/10.1038/ncomms11969.

    Article  CAS  Google Scholar 

  • Neumann, Barbara, Athanasios T. Vafeidis, Juliane Zimmermann, and Robert J. Nicholls. 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS One 10 (3): e0118571. https://doi.org/10.1371/journal.pone.0118571.

    Article  CAS  Google Scholar 

  • Niu, Zhen Guo, Peng Gong, Xiao Cheng, Jian Hong Guo, Lin Wang, Hua Bing Huang, Shao Qing Shen, YunZhao Wu, XiaoFeng Wang, XianWei Wang, Qing Ying, Lu Liang, LiNa Zhang, Lei Wang, Qian Yao, ZhenZhong Yang, ZiQi Guo, and YongJiu Dai. 2009. Geographical characteristics of China’s wetlands derived from remotely sensed data. Science in China, Series D: Earth Sciences 52 (6): 723–738. https://doi.org/10.1007/s11430-009-0075-2.

    Article  Google Scholar 

  • Phan, Linh K., Jaap S.M. van Thiel de Vries, and Marcel J.F. Stive. 2015. Coastal mangrove squeeze in the Mekong Delta. Journal of Coastal Research 31: 233–243. https://doi.org/10.2112/JCOASTRES-D-14-00049.1.

    Article  Google Scholar 

  • Resio, Donald T., and Joannes J. Westerink. 2008. Modeling the physics of storm surges. Physics Today 61 (9): 33–38. https://doi.org/10.1063/1.2982120.

    Article  Google Scholar 

  • Rodriguez, E., C. Cs Morris, and J. Je Belz. 2006. A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing 72 (3): 249–260. https://doi.org/10.14358/PERS.72.3.249.

    Article  Google Scholar 

  • Shepard, Christine C., Caitlin M. Crain, and Michael W. Beck. 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS One 6 (11): e27374. https://doi.org/10.1371/journal.pone.0027374.

    Article  CAS  Google Scholar 

  • Small, Christopher, and Robert J. Nicholls. 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research 19: 584–599.

    Google Scholar 

  • Smolders, S., Y. Plancke, S. Ides, P. Meire, and S. Temmerman. 2015. Role of intertidal wetlands for tidal and storm tide attenuation along a confined estuary: a model study. Natural Hazards and Earth System Sciences Discussions 3 (5): 3181–3224. https://doi.org/10.5194/nhessd-3-3181-2015.

    Article  Google Scholar 

  • Spalding, M., Anna Mcivor, F.H. Tonneijck, S. Tol, and P. van Eijk. 2014. Mangroves for coastal defence. In Guidelines for coastal managers & policy makers.

    Google Scholar 

  • Stark, J., T. Van Oyen, P. Meire, and S. Temmerman. 2015. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnology and Oceanography 60 (4): 1371–1381. https://doi.org/10.1002/lno.10104.

    Article  Google Scholar 

  • Stark, Jeroen, Yves Plancke, Stefaan Ides, Patrick Meire, and Stijn Temmerman. 2016. Coastal flood protection by a combined nature-based and engineering approach: modeling the effects of marsh geometry and surrounding dikes. Estuarine, Coastal and Shelf Science 175: 34–45. https://doi.org/10.1016/j.ecss.2016.03.027.

    Article  Google Scholar 

  • Syvitski, J.P.M., A.J. Kettner, I. Overeem, E.W.H. Hutton, M.T. Hannon, G.R. Brakenridge, J. Day, C. Vörösmarty, Y. Saito, L. Giosan, R.J. Nicholls. 2009. Sinking deltas due to human activities. Nature Geoscience 2(10):681-686

  • Sun, G., K.J. Ranson, V.I. Kharuk, and K. Kovacs. 2003. Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment 88 (4): 401–411. https://doi.org/10.1016/j.rse.2003.09.001.

    Article  Google Scholar 

  • Sutton-Grier, Ariana E., Kateryna Wowk, and Holly Bamford. 2015. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science and Policy 51: 137–148. https://doi.org/10.1016/j.envsci.2015.04.006.

    Article  Google Scholar 

  • Temmerman, Stijn, and Matthew L. Kirwan. 2015. Building land with a rising sea. Science 349 (6248): 588–589.

    Article  CAS  Google Scholar 

  • Temmerman, Stijn, Patrick Meire, Tjeerd J. Bouma, Peter M.J. Herman, Tom Ysebaert, and Huib J. De Vriend. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504 (7478): 79–83. https://doi.org/10.1038/nature12859.

    Article  CAS  Google Scholar 

  • Tessler, Z.D., C.J. Vörösmarty, M. Grossberg, I. Gladkova, H. Aizenman, J.P.M. Syvitski, and E. Foufoula-Georgiou. 2015. Profiling risk and sustainability in coastal deltas of the world. Science 349 (6248): 638–643.

    Article  CAS  Google Scholar 

  • United States Army Corps of Engineers. 2006. Louisiana coastal protection and restoration (LaCPR) preliminary technical report to United States Congress.

  • UT BATTELLE LLC. n.d. LandScan frequently asked questions. http://web.ornl.gov/sci/landscan/landscan_faq.shtml. Accessed 16 November 2016.

  • Vafeidis, Athanasios T., G. Boot, J. Cox, L. Mcfadden, and R.J. Nicholls. 2005. The diva database documentation. 1–33.

  • Wamsley, Ty V., Mary A. Cialone, Jane M. Smith, John H. Atkinson, and Julie D. Rosati. 2010. The potential of wetlands in reducing storm surge. Ocean Engineering 37 (1): 59–68. https://doi.org/10.1016/j.oceaneng.2009.07.018.

    Article  Google Scholar 

  • Woodruff, Jonathan D., Jennifer L. Irish, and Suzana J. Camargo. 2013. Coastal flooding by tropical cyclones and sea-level rise. Nature 504 (7478): 44–52. https://doi.org/10.1038/nature12855.

    Article  CAS  Google Scholar 

  • Zhang, Keqi, Huiqing Liu, Yuepeng Li, Xu Hongzhou, Jian Shen, Jamie Rhome, and Thomas J. Smith. 2012. The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf Science 102-103: 11–23. https://doi.org/10.1016/j.ecss.2012.02.021.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the different data providers and Dr. Chen Wang for her help in the gathering of the Chinese wetland data.

Funding

This work was funded by the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Van Coppenolle.

Additional information

Communicated by Arnoldo Valle-Levinson

Electronic Supplementary Material

ESM 1

(DOCX 2691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Coppenolle, R., Schwarz, C. & Temmerman, S. Contribution of Mangroves and Salt Marshes to Nature-Based Mitigation of Coastal Flood Risks in Major Deltas of the World. Estuaries and Coasts 41, 1699–1711 (2018). https://doi.org/10.1007/s12237-018-0394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0394-7

Keywords

Navigation