Skip to main content
Log in

Resource Use of an Aquacultured Oyster (Crassostrea gigas) in the Reverse Estuary Bahía San Quintín, Baja California, México

  • Note
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Shellfish aquaculture is prominent in many coastal and estuarine environments and has both ecological and economic impacts. Bahía San Quintín is a reverse estuary in Baja California, Mexico, where Pacific oysters (Crassostrea gigas) are cultivated. While oysters likely feed heavily on phytoplankton especially during upwelling periods, we hypothesized that other forms of organic matter such as seagrass (Zostera marina) and macroalgae (Ulva spp.) must also be used by the oysters, especially in the most inshore portions of the bay. We measured the carbon and hydrogen stable isotope composition of oysters and their potential food resources at upper, mid, and lower bay sites during upwelling and non-upwelling seasons and applied a Bayesian mixing model to evaluate resource use. Hydrogen isotopes provided a large separation between potential food resources. Although we did not find any strong seasonal effects due to upwelling, there was a strong spatial gradient in resource use. Phytoplankton were most important at the lower (oceanic) site (median resource use for two sampling times, 68 and 79 %) and decreased up the estuary as macroalgae became more important (43 and 56 % at the upper site). At all sites for both sampling times, seagrass was an unimportant resource for oysters. The contrast between high phytoplankton use at the lower site and increased macroalgal use at the upper site is likely due to available resource biomass. Results indicate the adaptability of oysters to varying resource availability and the possibility of a higher system carrying capacity than that based on phytoplankton alone given multiple potential food sources. This study also highlights the utility of hydrogen isotopes in estuarine food web research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alvarez-Borrego, J., and S. Alvarez-Borrego. 1982. Temporal and spatial variability of temperature in two coastal lagoons. CalCOFI Reports 23: 188–197.

    Google Scholar 

  • Baeta, A., R. Pinto, I. Valiela, P. Richard, N. Niquil, and J.C. Marques. 2009. δ15N and δ13C in the Mondego estuary food web: seasonal variation in producers and consumers. Marine Environmental Research 67: 109–116.

    Article  CAS  Google Scholar 

  • Bidigare, R.R., A. Fluegge, K.H. Freeman, K.L. Hanson, J.M. Hayes, D. Hollander, J.P. Jasper, L.L. King, E.A. Laws, J. Milder, F.J. Millero, R. Pancost, B.N. Popp, P.A. Steinberg, and S.G. Wakeham. 1997. Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochemical Cycles 11: 279–292.

    Article  CAS  Google Scholar 

  • Bouillon, S., R.M. Connolly, and D.P. Gillikin. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on estuarine and coastal science, vol 7, ed. E. Wolanski and D.S. McLusky, 143–173. Waltham: Academic Press.

    Chapter  Google Scholar 

  • Cabello-Pasini, A., R. Muñiz-Salazar, and D.H. Ward. 2003. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific. Aquatic Botany 76: 31–47.

    Article  Google Scholar 

  • Cabello-Pasini, A., R. Muñiz-Salazar, and D.H. Ward. 2004. Biochemical characterizations of eelgrass (Zostera marina) at its southern end of distribution in the North Pacific. Ciencias Marinas 30: 21–34.

    Google Scholar 

  • Camacho-Ibar, V.F., J.D. Carriquiry, and S.V. Smith. 2003. Non-conservative P and N fluxes and net ecosystem productivity in San Quintin Bay, México. Estuaries 26: 1220–1237.

    Article  CAS  Google Scholar 

  • Campbell, C., and D. Pauly. 2013. Mariculture: a global analysis of production trends since 1950. Marine Policy 39: 94–100.

    Article  Google Scholar 

  • Cole, J.J., S.R. Carpenter, J. Kitchell, M.L. Pace, C.T. Solomon, and B. Weidel. 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the United States of America 108: 1975–1980.

    Article  CAS  Google Scholar 

  • Como, S., P. Magni, G. Van Der Velde, F.S. Blok, and M.F.M. Van De Steeg. 2012. Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon. Estuarine, Coastal and Shelf Science 115: 300–308.

    Article  CAS  Google Scholar 

  • Cyrus, M.D., J.J. Bolton, R. Scholtz, and B.M. Macey. 2014. The advantages of Ulva (Chlorophyta) as an additive in sea urchin formulated feeds: effects on palatability, consumption and digestibility. Aquaculture Nutrition. doi:10.1111/anu.12182.

    Google Scholar 

  • Dame, R.F. 2012. Ecology of marine bivalves: an ecosystem approach. Boca Raton: CRC Press.

    Google Scholar 

  • Dame, R.F., and T.C. Prins. 1998. Bivalve carrying capacity in coastal ecosystems. Aquatic Ecology 31: 409–421.

    Article  Google Scholar 

  • Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Article  Google Scholar 

  • Delgado-González, O.E., J.A. Jiménez, J.L. Fermán-Almada, F. Marván-Gargollo, A. Mejía-Trejo, and Z. García-Esquivel. 2010. Depth and hydrodynamics as tools to select aquaculture areas in the coastal zone. Ciencias Marinas 36: 249–265.

    Article  Google Scholar 

  • Doi, H., M. Matsumasa, T. Toya, N. Satoh, C. Mizota, Y. Maki, and E. Kikuchi. 2005. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analysis. Estuarine, Coastal and Shelf Science 64: 316–322.

    Article  Google Scholar 

  • Doucett, R.R., J.C. Marks, D.W. Blinn, M. Caron, and B.W. Hungate. 2007. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88: 1587–1592.

    Article  Google Scholar 

  • Dubois, S., F. Orvain, J.C. Marin-Léal, M. Ropert, and S. Lefebvre. 2007. Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Marine Ecology Progress Series 336: 151–160.

    Article  CAS  Google Scholar 

  • FAO. 2014. The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Fertig, B., T.J.B. Carruthers, W.C. Dennison, K.A. Meyer, and M.R. Williams. 2014. Isotopic values in oysters indicate elemental sources constrained by multiple gradients. Ecological Indicators 46: 101–109.

    Article  CAS  Google Scholar 

  • Filgueira, R., T. Guyondet, L.A. Comeau, and J. Grant. 2014. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carrying capacity in the Richubucto Estuary, Eastern Canada. Journal of Marine Systems 136: 42–54.

    Article  Google Scholar 

  • Fourqurean, J.W., T.O. Moore, B. Fry, and J.T. Hollibaugh. 1997. Spatial and temporal variation in C:N:P ratios, δ15N, and δ13C of eelgrass (Zostera marina L.) as indicators of ecosystem processes, Tomales Bay, CA, USA. Marine Ecology Progress Series 157: 147–157.

    Article  CAS  Google Scholar 

  • Fry, B. 2013. Alternative approaches for solving underdetermined isotope mixing problems. Marine Ecology Progress Series 472: 1–13.

    Article  CAS  Google Scholar 

  • Gallardi, D. 2014. Effects of bivalve aquaculture on the environment and their possible mitigation: a review. Fisheries and Aquaculture Journal 5. doi:10.4172/2150-3508.1000105.

  • Gracia-Escobar, M.F., R. Millán-Núñez, A. González-Silvera, E. Santamaría-del-Ángel, V.F. Camacho-Ibar, and C.C. Trees. 2014. Changes in the abundance and composition of phytoplankton in a coastal lagoon during neap-spring tide conditions. Open Journal of Marine Science 4: 80–100.

    Article  Google Scholar 

  • Guyondet, T., R. Sonier, and L.A. Comeau. 2013. Spatially explicit seston depletion index to optimize shellfish culture. Aquaculture Environment Interactions 4: 175–186.

    Article  Google Scholar 

  • Herman, P.M.J., J.J. Middleburg, J. Widdows, C.H. Lucas, and C.H.R. Heip. 2000. Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Marine Ecology Progress Series 204: 79–92.

    Article  CAS  Google Scholar 

  • Hernández-Ayón, J.M., M.S. Galindo-Bect, V. Camacho-Ibar, Z. García-Esquivel, M.A. González-Gómez, and F. Ley-Lou. 2004. Nutrient dynamics in the west arm of San Quintín Bay, Baja California, Mexico, during and after El Niño 1997/1998. Ciencias Marinas 30: 119–132.

    Google Scholar 

  • Hessing-Lewis, M.L., and S.D. Hacker. 2013. Upwelling-influence, macroalgal blooms, and seagrass production; temporal trends from latitudinal and local scales in northeast Pacific estuaries. Limnolology and Oceanography 58: 1103–1112.

    Article  Google Scholar 

  • Hinga, K.R., M.A. Arthur, M.E.W. Pilson, and D. Whitaker. 1994. Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and species. Global Biogeochemical Cycles 8: 91–102.

    Article  CAS  Google Scholar 

  • Hondula, K.L., and M.L. Pace. 2014. Macroalgal support of cultured hard clams in a low nitrogen coastal lagoon. Marine Ecology Progress Series 498: 187–201.

    Article  CAS  Google Scholar 

  • Hondula, K.L., M.L. Pace, J.J. Cole, and R.D. Batt. 2013. Hydrogen isotope discrimination in aquatic primary producers: implications for aquatic food web studies. Aquatic Sciences 76: 217–229.

    Article  Google Scholar 

  • Hsieh, H., W. Kao, C. Chen, and P. Liu. 2000. Detrital flows through the feeding pathway of the oyster (Crassostrea gigas) in a tropical shallow lagoon: δ13C signals. Marine Biology 136: 677–684.

    Article  Google Scholar 

  • Jaschinski, S., D.C. Brepohl, and U. Sommer. 2008. Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses. Marine Ecology Progress Series 358: 103–114.

    Article  Google Scholar 

  • Jorgensen, P. 2006. Control de Zostera marina por consumidores y recursos en praderas bajo diferentes regímenes de fertilización natural. Ph.D. thesis in Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México.

  • Jorgensen, P., S.E. Ibarra-Obando, and J.D. Carriquiry. 2010. Management of natural Ulva spp. blooms in San Quintin Bay, Baja California: is it justified? Journal of Applied Phycology 22: 549–558.

    Article  Google Scholar 

  • Kanaya, G., S. Takagi, E. Nobata, and E. Kikuchi. 2007. Spatial shift of macrozoobenthos in a brackish lagoon revealed by carbon and nitrogen stable isotope ratios. Marine Ecology Progress Series 345: 117–127.

    Article  CAS  Google Scholar 

  • Klumpp, D.W., J.S. Salita-Espinosa, and M.D. Fortes. 1992. The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquatic Botany 43: 327–349.

    Article  Google Scholar 

  • Koch, E., J.D. Ackerman, J. Verduin, and M. van Keulen. 2006. Fluid dynamics in seagrass ecology—from molecules to ecosystems. In Seagrasses: biology, ecology and conservation, ed. Anthony W.D. Larkum, Robert H. Orth, and Carlos M. Duarte, 193–225. Amsterdam: Springer.

    Google Scholar 

  • Kopp, D., S. Lefebvre, M. Cachera, M.C. Villanueva, and B. Ernande. 2014. Reorganization of a marine trophic network along an inshore–offshore gradient due to stronger pelagic–benthic coupling in coastal areas. Progress in Oceanography. doi:10.1016/j.pocean.2014.11.001.

    Google Scholar 

  • Lange, B., K.L. Currie, G.S. Howarth, and D.A.J. Stone. 2014. Grape seed extract and dried macroalgae, Ulva lactura Linnaeus, improve survival of greenlip abalone, Haliotis laevigata Donovan, at high water temperature. Aquaculture 433: 348–360.

    Article  Google Scholar 

  • Laws, E.A., B.N. Popp, R.R. Bidigare, M.C. Kennicutt, and S.A. Macko. 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochimica et Cosmochimica Acta 59: 1131–1138.

    Article  CAS  Google Scholar 

  • Leal, J.C.M., S. Dubois, F. Orvain, R. Galois, J.L. Blin, M. Ropert, M.P. Bataillé, A. Ourry, and S. Lefebvre. 2008. Stable isotopes (δ13C, δ15N) and modeling as tools to estimate the trophic ecology of cultivated oysters in two contrasting environments. Marine Biology 153: 673–688.

    Article  Google Scholar 

  • Lécuyer, C., P. Gillet, and F. Robert. 1998. The hydrogen isotope composition of seawater and the global water cycle. Chemical Geology 145: 249–261.

    Article  Google Scholar 

  • Lefebvre, S., C. Harma, and J.L. Blin. 2009. Trophic typology of coastal ecosystems based on δ13C and δ15N ratios in an opportunistic suspension feeder. Marine Ecology Progress Series 390: 27–37.

    Article  CAS  Google Scholar 

  • Liu, K.K., and I.R. Kaplan. 1989. The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnology and Oceanography 34: 820–830.

    Article  CAS  Google Scholar 

  • Marchais, V., G. Schaal, J. Grall, A. Lorrain, C. Nerot, P. Richard, and L. Chauvaud. 2013. Spatial variability of stable isotope ratios in oysters (Crassostrea gigias) and primary producers along an estuarine gradient (Bay of Brest, France). Estuaries and Coasts 36: 808–819.

    Article  CAS  Google Scholar 

  • Middleburg, J.J. 2014. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11: 2357–2371.

    Article  Google Scholar 

  • Millán-Núñez, R., S. Álvarez-Borrego, and D.M. Nelson. 1982. Effects of physical phenomena on the distribution of nutrients and phytoplankton productivity in a coastal lagoon. Estuarine, Coastal and Shelf Science 15: 317–335.

    Article  Google Scholar 

  • Millán-Núñez, R., E. Millán-Núñez, S. Álvarez-Borrego, C.C. Trees, and E. Santamaría-del-Ángel. 2004. Variability of the phytoplankton community in San Quintín Bay based on pigment analysis. Ciencias Marinas 30: 35–43.

    Google Scholar 

  • Newell, R.I.E. 1988. Ecological changes in Chesapeake Bay: are they the result of overharvesting the American oyster, Crassostrea virginica? Understanding the estuary: advances in Chesapeake Bay research. Proceedings of a conference. Chesapeake Research Consortium Publication 129: 536–546.

    Google Scholar 

  • NOAA. 2014. Pacific Fisheries Environmental Laboratory, upwelling indices. http://www.pfel.noaa.gov/products/PFEL/modeled/indices/upwelling/. Accessed 31 Jan 2015.

  • Oczkowski, A.J., M.E.Q. Pilson, and S.W. Nixon. 2010. A marked gradient in δ13C values of clams Mercenaria mercenaria across a marine embayment may reflect variations in ecosystem metabolism. Marine Ecology Progress Series 414: 145–153.

    Article  Google Scholar 

  • Ouisse, V., P. Riera, A. Migné, C. Leroux, and D. Davoult. 2012. Food web analysis in intertidal Zostera marina and Zostera noltii communities in winter and summer. Marine Biology 159: 165–175.

    Article  Google Scholar 

  • Page, H.M., and M. Lastra. 2003. Diet of intertidal bivalves in the Ría de Arosa (NW Spain): evidence from stable C and N isotope analysis. Marine Biology 143: 519–532.

    Article  CAS  Google Scholar 

  • Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologica 20: 479–487.

    Article  Google Scholar 

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell, B.X. Semmens, and E.J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Popp, B.N., E.A. Laws, R.R. Bidigare, J.E. Dore, K.L. Hanson, and S.G. Wakeham. 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62: 69–77.

    Article  CAS  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Ribas-Ribas, M., J.M. Hernández-Ayón, V.F. Camacho-Ibar, A. Cabello-Pasini, A. Mejia-Trejo, R. Durazo, S. Galindo-Bect, A.J. Souza, J.M. Forja, and A. Siqueiros-Valencia. 2011. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuarine, Coastal and Shelf Science 95: 367–376.

    Article  CAS  Google Scholar 

  • Riera, P. 2007. Trophic subsidies of Crassostrea gigas, Mytilus edulis, and Crepidula fornicate in the Bay of Mont Saint Michel (France): a δ13C and δ15N investigation. Estuarine, Coastal and Shelf Science 72: 33–41.

    Article  Google Scholar 

  • Riera, P., L.J. Stal, J. Nieuwenhuize, P. Richard, G. Blanchard, and F. Gentil. 1999. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources. Marine Ecology Progress Series 187: 301–307.

    Article  CAS  Google Scholar 

  • Rosa, M., J.E. Ward, S.E. Shumway, G.H. Wikfors, E. Pales-Espinosa, and B. Allam. 2013. Effects of particle surface properties on feeding selectivity in the eastern oyster Crassostrea virginica and the blue mussel Mytilus edulis. Journal of Experimental Marine Biology and Ecology 446: 320–327.

    Article  Google Scholar 

  • Rossi, F., P.M.J. Herman, and J.J. Middleburg. 2004. Interspecific and intraspecific variation of δ13C and δ15N in deposit- and suspension-feeding bivalves (Macoma balthica and Cerastoderma edule): evidence of ontogenetic changes in feeding mode of Macoma bathica. Limnology and Oceanography 49: 408–414.

    Article  CAS  Google Scholar 

  • Ruesink, J.L., G.C. Roegner, B.R. Dumbauld, J.A. Newton, and D.A. Armstrong. 2003. Contributions of coastal and watershed energy sources to secondary production in a northeastern Pacific estuary. Estuaries 26: 1079–1093.

    Article  Google Scholar 

  • Ruesink, J.L., H.S. Lenihan, A.C. Trimble, K.W. Heiman, F. Micheli, J.E. Byers, and M.C. Kay. 2005. Introduction of non-native oysters: ecosystem effects and restorations impacts. Annual Review of Ecology, Evolution, and Systematics 36: 643–689.

    Article  Google Scholar 

  • Saurel, C., J.G. Ferreira, D. Cheney, A. Suhrbier, B. Dewey, J. Davis, and J. Cordell. 2014. Ecosystem goods and services from Manila clam culture in Puget Sound: a modelling analysis. Aquaculture Environment Interactions 5: 255–270.

    Article  Google Scholar 

  • Schaal, G., P. Riera, and C. Leroux. 2008. Trophic coupling between two adjacent benthic food webs within a man-made intertidal area: a stable isotopes evidence. Estuarine, Coastal and Shelf Science 77: 523–534.

    Article  Google Scholar 

  • Secrist, R.G. 2013. Food availability and utilization for cultured hard clams. Master’s thesis, Virginia Institute of Marine Science. USA: The College of William and Mary, Gloucester Point, Virginia.

  • Semmens, B.X., E.J. Ward, J.W. Moore, and C.T. Darimont. 2009. Quantifying inter- and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS ONE 4: e6187.

    Article  Google Scholar 

  • Sigman, D.M., J. Granger, P.J. DiFiore, M.M. Lehmann, R. Ho, G. Cane, and A. van Green. 2005. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Global Biogeochemical Cycles 19: GB4022.

    Article  Google Scholar 

  • Soares, L.S.H., E.Y. Muto, J.P. Lopez, G.R.V. Clauzet, and I. Valiela. 2014. Seasonal variability of δ13C and δ15N of fish and squid in the Cabo Frio upwelling system of the southwestern Atlantic. Marine Ecology Progress Series 512: 9–21.

    Article  Google Scholar 

  • Solomon, C.T., J.J. Cole, R.R. Doucett, M.L. Pace, N.D. Preston, L.E. Smith, and B.C. Weidel. 2009. The influence of environmental water on the hydrogen stable isotope ratio in aquatic consumers. Oecologia 161: 313–324.

    Article  Google Scholar 

  • Solomon, C.T., S.R. Carpenter, M.K. Clayton, J.J. Cole, J.J. Coloso, M.L. Pace, M.J. Zanden, and B.C. Weidel. 2011. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92: 1115–1125.

    Article  Google Scholar 

  • Thomas, S.M., and T.W. Crowther. 2014. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. Journal of Animal Ecology. doi:10.1111/1365-2656.12326.

    Google Scholar 

  • Vinagre, C., and M.J. Costa. 2014. Estuarine–coastal gradient in food web network structure and properties. Marine Ecology Progress Series 503: 11–21.

    Article  Google Scholar 

  • Vinagre, C., J.P. Salgado, V. Mendonça, H. Cabral, and M.J. Costa. 2012. Isotopes reveal fluctuation in trophic levels of estuarine organisms, in space and time. Journal of Sea Research 72: 49–54.

    Article  Google Scholar 

  • Ward, D.H., A. Morton, T.L. Tibbitts, D.C. Douglas, and E. Carrera-González. 2003. Long-term change in eelgrass distribution at Bahía San Quintín, Baja California, Mexico, using satellite imagery. Estuaries 26: 1529–1539.

    Article  Google Scholar 

  • Wilkinson, G.M., S.R. Carpenter, J.J. Cole, M.L. Pace, and C. Yang. 2013. Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biology 58: 2037–2049.

    Article  Google Scholar 

  • Wilkinson, G.M., J.J. Cole, and M.L. Pace. 2015. Deuterium as a food source tracer: sensitivity to environmental water, lipid content, and hydrogen exchange. Limnology and Oceanography: Methods 15: 213–223.

    Article  Google Scholar 

  • Yokoyama, H., A. Tamaki, K. Harada, K. Shimoda, K. Koyama, and Y. Ishihi. 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Marine Ecology Progress Series 296: 115–128.

    Article  CAS  Google Scholar 

  • Zaitzev, O., R. Cervantes-Duarte, O. Montante, and A. Gallegos-García. 2003. Coastal upwelling activity on the Pacific shelf of the Baja California Peninsula. Journal of Oceanography 59: 489–502.

    Article  Google Scholar 

  • Zertuche-González, J.A., V.F. Camacho-Ibar, I. Pacheco-Ruíz, A. Cabello-Pasini, L.A. Galindo-Bect, J.M. Guzmán-Calderón, V. Macias-Carranza, and J. Espinoza-Avalos. 2009. The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. Journal of Applied Phycology 21: 729–736.

    Article  Google Scholar 

  • Zhang, J., P.D. Quay, and D.O. Wilbur. 1995. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta 59: 107–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge UABC for transportation, supplies, and lab space. We thank Oscar Hernández-Sánchez and Maricarmen Ávila-López for field and lab support and Eduardo Ortíz and Arturo Siqueiros for lab support. We are grateful to Nautilus Oyster farm for their support, boat, and driver. This paper was improved by the comments of three anonymous reviewers. Funding was provided by NSF grants DEB 1237733 (KJM, Virginia Coast Reserve LTER) and DEB 1144624 (MLP), the University of Virginia Department of Environmental Sciences Moore Award (KAE), and CONACYT (México) grant no. CB2010-154376 (VCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle A. Emery.

Additional information

Communicated by Marco Bartoli

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, K.A., Wilkinson, G.M., Camacho-Ibar, V.F. et al. Resource Use of an Aquacultured Oyster (Crassostrea gigas) in the Reverse Estuary Bahía San Quintín, Baja California, México. Estuaries and Coasts 39, 866–874 (2016). https://doi.org/10.1007/s12237-015-0021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-0021-9

Keywords

Navigation