Skip to main content
Log in

Hydrogen isotope discrimination in aquatic primary producers: implications for aquatic food web studies

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Large differences in δ 2H of primary producers between aquatic and terrestrial ecosystems are used to identify subsidies, discriminate organic matter sources, and reduce uncertainty in food web studies. Previous investigations of hydrogen isotope ratios suggest there may be predictable differences between the δ 2H of water and organic matter for different types of primary producers. We define the difference in the net isotopic discrimination between water and bulk organic matter (om) as: ΔH = (δ 2Homδ 2Hwater) ÷ (1 + δ 2Hwater ÷ 1,000). We summarized ΔH values from published literature and we measured the δ 2H of water and primary producers in order to compare ΔH among aquatic and terrestrial primary producers. Measurements were made from three water body types (lake, river, coastal lagoon) and their associated watersheds. Although we predicted a large and equivalent net isotopic discrimination for aquatic primary producers, we found considerable variability among groups of aquatic producers. Macroalgae, benthic microalgae, and phytoplankton had more negative ΔH values (i.e. greater isotopic discrimination) than both aquatic macrophytes and terrestrial vegetation. The more positive δ 2Hom and hence lower ΔH of terrestrial vegetation was expected due to relative increases in the heavier isotope, deuterium, during transpiration. However, the more positive values of δ 2Hom and relatively low ΔH in aquatic macrophytes, even submerged species, was unexpected. Marine macroalgae had high variability in δ 2Hom as a group, but low variability within distinct species. Variability among types of primary producers in δ 2Hom and in ΔH should be assessed when hydrogen is used in isotopic studies of food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babler AL, Pilanti A, Vanni MJ (2011) Terrestrial support of detritivorous fish populations decreases with watershed size. Ecosphere 2: Article 76

  • Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a peclet effect. Oecologia 138(3):426–435

    Article  PubMed  Google Scholar 

  • Batt RD, Carpenter SR, Cole JJ, Pace ML, Cline TJ, Johnson RA, Seekell DA (2012) Resources supporting the food web of a naturally productive lake. Limnol Oceanogr 57(5):1443–1452

    Article  CAS  Google Scholar 

  • Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143(3):337–348

    Article  PubMed  Google Scholar 

  • Bunn SE, Leigh C, Jardine TD (2013) Diet-tissue fractionation of δ 15N by consumers from streams and rivers. Limnol Oceanogr 58(3):765–773

    Article  CAS  Google Scholar 

  • Caraco N, Bauer JE, Cole JJ, Petsch S, Raymond P (2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91(8):2385–2393

    Article  PubMed  Google Scholar 

  • Chesson LA, Podlesak DW, Cerling TE, Ehleringer JR (2009) Evaluating uncertainty in the calculations of non-exchangeable hydrogen fractions within organic materials. Rapid Commun Mass SP 23(9):1275–1280

    Article  CAS  Google Scholar 

  • Cole JJ, Solomon CT (2012) Terrestrial support of zebra mussels and the Hudson River food web: a multi-isotope, bayesian analysis. Limnol Oceanogr 57(6):1802–1815

    Article  Google Scholar 

  • Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108(5):1975–1980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuntz M, Ogee J, Farquhar GD, Peylin P, Cernusak LA (2007) Modelling advection and diffusion of water isotopologues in leaves. Plant Cell Environ 30(8):892–909

    Article  CAS  PubMed  Google Scholar 

  • Deines P, Wooller MJ, Grey J (2009) Unravelling complexities in benthic food webs using a dual stable isotope (hydrogen and carbon) approach. Freshw Biol 54(11):2243–2251

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45(10):1885–1894

    Article  CAS  Google Scholar 

  • Doucett RR, Marks JC, Blinn DW, Caron M, Hungate BA (2007) Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88(6):1587–1592

    Article  PubMed  Google Scholar 

  • Emerson SR, Hedges JI (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, New York

    Book  Google Scholar 

  • Epstein S, Yapp CJ, Hall JH (1976) Determination of D–H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth Planet Sci Lett 30(2):241–251

    Article  CAS  Google Scholar 

  • Estep MF, Dabrowski H (1980) Tracing food webs with stable hydrogen isotopes. Science 209(4464):1537–1538

    Article  CAS  PubMed  Google Scholar 

  • Fenton GE, Ritz DA (1989) Spatial variability of 13C:12C and D:H in Ecklonia radiata (C.Ag) J. Agardh (Laminariales). Estuar Coast Shelf Sci 28(1):95–101

    Article  CAS  Google Scholar 

  • Finlay JC, Doucett RR, McNeely C (2010) Tracing energy flow in stream food webs using stable isotopes of hydrogen. Freshw Biol 55(5):941–951

    Article  CAS  Google Scholar 

  • Flanagan LB, Comstock JP, Ehleringer JR (1991) Comparison of modeled and observed environmental-influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol 96(2):588–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Hou J, D’Andrea WJ, Huang Y (2008) Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochim Cosmochim Acta 72(14):3503–3517

    Article  CAS  Google Scholar 

  • Jardine TD, Kidd KA, Cunjak RA (2009) An evaluation of deuterium as a food source tracer in temperate streams of eastern Canada. J N Am Benthol Soc 28(4):885–893

    Article  Google Scholar 

  • Karlsson J, Berggren M, Ask J, Byström P, Jonsson A, Laudon H, Jansson M (2012) Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol Oceanogr 57(4):1042–1048

    Article  CAS  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64(2):121–175

    Article  Google Scholar 

  • Kendall C, Coplen T (2001) Distribution of oxygen-18 and deuterium in river waters across the US. Hydrol Processes 15(7):1363–1393

    Article  Google Scholar 

  • Krabbenhoft DP, Webster KE (1995) Transient hydrogeological controls on the chemistry of a seepage lake. Water Resour Res 31(9):2295–2305

    Article  CAS  Google Scholar 

  • Luo YH, Sternberg L (1991) Deuterium heterogeneity in starch and cellulose nitrate of CAM and C3 plants. Phytochemistry 30(4):1095–1098

    Article  CAS  Google Scholar 

  • Luo YH, Sternberg L (1992) Hydrogen and oxygen isotopic fractionation during heterotrophic cellulose synthesis. J Exp Bot 43(246):47–50

    Article  CAS  Google Scholar 

  • Luo YH, Sternberg L, Suda S, Kumazawa S, Mitsui A (1991) Extremely low D/H ratios of photo-produced hydrogen by cyanobacteria. Plant Cell Physiol 32(6):897–900

    CAS  Google Scholar 

  • Macko SA, Estep M, Lee W (1983) Stable hydrogen isotope analysis of food-webs on laboratory and field populations of marine amphipods. J Exp Mar Biol Ecol 72(3):243–249

    Article  CAS  Google Scholar 

  • McCutchan J, Lewis W, Kendall C, McGrath C (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2):378–390

    Article  CAS  Google Scholar 

  • Pagano AM, Titus JE (2007) Submersed macrophyte growth at low pH: carbon source influences response to dissolved inorganic carbon enrichment. Freshw Biol 52(12):2412–2420

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3):703–718

    Article  Google Scholar 

  • Rascio N (2002) The underwater life of secondarily aquatic plants: some problems and solutions. Crit Rev Plant Sci 21(4):401–427

    Article  Google Scholar 

  • Riera P, Richard P (1996) Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oleron. Estuar Coast Shelf Sci 42(3):347–360

    Article  Google Scholar 

  • Roden JS, Ehleringer JR (1999) Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig–Gordon model under wide-ranging environmental conditions. Plant Physiol 120(4):1165–1173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roden JS, Lin GG, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64(1):21–35

    Article  CAS  Google Scholar 

  • Sachse D, Billaut I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, Freeman KH, Magill CR, McInerney FA, van der Meer MTJ, Polissar P, Robins RJ, Sachs JP, Schmidt H-L, Sessions AL, White JWC, West JB, Kahmen A (2012) Molecular paleo-hydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci 40:221–249

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Pedersen MF, Nielsen SL (1992) Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshw Biol 27(2):283–293

    Article  Google Scholar 

  • Schiegl WE, Vogel JC (1970) Deuterium content of organic matter. Earth Planet Sci Lett 7(4):307–313

    Article  CAS  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London

    Google Scholar 

  • Sessions AL (2006) Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta 70(9):2153–2162

    Article  CAS  Google Scholar 

  • Sessions AL, Burgoyne TW, Schimmelmann A, Hayes JM (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org Geochem 30(9):1193–1200

    Article  CAS  Google Scholar 

  • Shu Y, Feng X, Posmentier ES, Sonder LJ, Faiia AM, Yakir D (2008) Isotopic studies of leaf water. Part 1: a physically based two-dimensional model for pine needles. Geochim Cosmochim Acta 72(21):5175–5188

    Article  CAS  Google Scholar 

  • Smith BN, Epstein S (1970) Biogeochemistry of stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiol 48(5):738–742

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research, 4th edn. W. H. Freeman and Co, New York

    Google Scholar 

  • Solomon CT, Carpenter SR, Clayton MK, Cole JJ, Coloso JJ, Pace ML, Weidel BC (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope bayesian mixing model. Ecology 92(5):1115–1125

    Article  PubMed  Google Scholar 

  • Sternberg L, DeNiro MJ, Johnson HB (1986) Oxygen and hydrogen isotope ratios of water from photosynthetic tissues of CAM and C(3) plants. Plant Physiol 82(2):428–431

    Article  CAS  PubMed Central  Google Scholar 

  • Vander Zanden M, Rasmussen J (2001) Variation in delta N-15 and delta C-13 trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46(8):2061–2066

    Article  CAS  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet delta(15)N enrichment: a meta-analysis. Oecologia 136(2):169–182

    Article  PubMed  Google Scholar 

  • Wahbeh MI (1997) Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets. Aquaculture 159(1–2):101–109

    Article  CAS  Google Scholar 

  • Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C (2013) Terrestrial support of pelagic consumers: patterns and variability revealed by a multi-lake study. Freshw Biol 58(10):2037–2049

    Article  Google Scholar 

  • Yakir D (1992) Variations in the natural abundance of O-18 and deuterium in plant carbohydrates. Plant Cell Environ 15(9):1005–1020

    Article  CAS  Google Scholar 

  • Yakir D, DeNiro MJ (1990) Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiol 93(1):325–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yakir D, DeNiro MJ, Rundel PW (1989) Isotopic inhomogeneity of leaf water—evidence and implications for the use of isotopic signals transduced by plants. Geochim Cosmochim Acta 53(10):2769–2773

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation via grants DEB #0621014, DEB #0917696, DEB#1119739, DEB#1237733. We thank the University of Notre Dame Environmental Research Center for facilitating our work. We graciously acknowledge Grace Wilkinson, Chris Solomon, Heather Malcom, and David Fisher for help with collecting samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Pace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hondula, K.L., Pace, M.L., Cole, J.J. et al. Hydrogen isotope discrimination in aquatic primary producers: implications for aquatic food web studies. Aquat Sci 76, 217–229 (2014). https://doi.org/10.1007/s00027-013-0331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0331-6

Keywords

Navigation