Skip to main content

Advertisement

Log in

CO2-Driven Ocean Acidification Disrupts the Filter Feeding Behavior in Chilean Gastropod and Bivalve Species from Different Geographic Localities

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We present experimental data obtained with newly hatched veliger larvae of the gastropod Concholepas concholepas and juveniles of the mussel Perumytilus purpuratus exposed to three pCO2 levels. Egg capsules of C. concholepas were collected from three geographic locations in northern (Antofagasta), central (Las Cruces), and southern Chile (Calfuco), and then incubated throughout their entire intra-capsular life cycle at three nominal pCO2 levels, ~400, 700, and 1,000 ppm. Similarly, P. purpuratus were collected from both Las Cruces and Calfuco and exposed to the same pCO2 levels during 6 weeks. Hatched gastropod larvae and mussel juvenile were fed with the haptophyte Isochrysis galbana. Clearance and ingestion rates were estimated for newly hatched larvae, and for juvenile mussel these rates were measured at two observation times (3 and 6 weeks). Our results clearly showed a significant negative effect of elevated pCO2 on the clearance and ingestion for both C. concholepas larvae and P. purpuratus juveniles, which dropped between 15 up to 70 % under high pCO2 conditions. The present study has also shown large variations in the sensitivities of C. concholepas larvae from different local populations (i.e. Antofagasta, Las Cruces, and Calfuco). The influence of both corrosive upwelling waters and the influence of freshwater discharges from Maipo River may explain the minor negative effect of high pCO2 conditions in hatched larvae from Las Cruces’ egg capsules, which would suggest that they are inherently more tolerant to ocean acidification (OA) than organisms that live on regions with a lower pCO2 variability. The present study suggests the need for site-specific studies and reveals the important effect of low pH conditions on feeding activity. Furthermore, this study supports the notion that feeding is a key physiological process susceptible to the effects of OA in marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera, V.M., C.A. Vargas, P.H. Manríquez, J.M. Navarro, and C. Duarte. 2013. Low-pH freshwater discharges drive spatial and temporal variations in life history traits of neritic copepod Acartia tonsa. Estuaries and Coasts 1–9.

  • Baldwin, B.S., and R.I.E. Newell. 1991. Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica. Marine Ecology Progress Series 78: 285–301.

    Article  Google Scholar 

  • Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710.

    Article  CAS  Google Scholar 

  • Beniash, E., A. Ivanina, N.S. Lieb, I. Kurochkin, and I.A. Sokolova. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series 419: 95–108.

    Article  CAS  Google Scholar 

  • Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review 49: 1–42.

  • Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.

  • Chan, K.Y.K., D. Grünbaum, and M.J. O’Donnell. 2011. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. The Journal of Experimental Biology 214: 3857–3867.

    Article  Google Scholar 

  • Coughlan, J. 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biology 2: 356–358.

    Article  Google Scholar 

  • Cummings, V., J. Hewitt, A. Van Rooyen, K. Currie, S. Beard, S. Thrush, and V. Metcalf. 2011. Ocean acidification at high latitudes: potential effects on functioning of the antarctic bivalve Laternula elliptica. PLoS One 6: e16069.

    Article  CAS  Google Scholar 

  • Denis, L., E. Alliot, and D. Grzebyk. 1999. Clearance rate responses of Mediterranean mussels, Mytilus galloprovincialis, to variations in the flow, water temperature, food quality and quantity. Aquatic Living Resources 12: 279–288.

    Article  Google Scholar 

  • Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A: Oceanographic Research Papers 34: 1733–1743.

    Article  CAS  Google Scholar 

  • DOE. 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. In Report ORNL/CDIAC-74, ed. Dickson, A.G. and C. Goyet. Oak Ridge: Oak Ridge National Laboratory.

  • Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, and L.D. Talley. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: 11–37.

    Article  Google Scholar 

  • Duarte, C.A., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36(2): 221–236.

    Article  CAS  Google Scholar 

  • Egge, J.K., J.F. Thingstad, A. Larsen, A. Engel, J. Wohlers, R. Bellerby, and U. Riebesell. 2009. Primary production during nutrient-induced blooms at elevated CO2 concentrations. Biogeosciences 6: 877–885.

    Article  CAS  Google Scholar 

  • Engel, A., K.G. Schulz, U. Riebesell, R. Bellerby, B. Delille, and M. Schartau. 2008. Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 5: 509–521.

    Article  CAS  Google Scholar 

  • Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science: Journal du Conseil 65: 414–432.

    Article  CAS  Google Scholar 

  • Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320: 1490–1492.

    Article  CAS  Google Scholar 

  • Feng, Y., C.E. Hare, K. Leblanc, J.M. Rose, Y. Zhang, G.R. DiTullio, and D.A. Hutchins. 2009. The effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. The phytoplankton community and biogeochemical response. Marine Ecology Progress Series 388: 13–25.

    Article  CAS  Google Scholar 

  • Fernández-Reiriz, M.J., P. Range, X.A. Álvarez-Salgado, and U. Labarta. 2011. Physiological energetics of juvenile clams Ruditapes decussatus in a high CO2 coastal ocean. Marine Ecology Progress Series 433: 97–105.

    Article  Google Scholar 

  • Findlay, H.S., M.A. Kendall, J.I. Spicer, C. Turley, and S. Widdicombe. 2008. Novel microcosm system for investigating the effects of elevated carbon dioxide and temperature on intertidal organisms. Aquatic Biology 3: 51–62.

    Article  Google Scholar 

  • Frost, B.W. 1975. A threshold feeding behavior in Calanus pacificus. Limnology and Oceanography 1: 263–266.

    Article  Google Scholar 

  • Gallardo, C.S. 1973. Desarrollo intracapsular de Concholepas concholepas (Brugière) (Gastropoda, Muricidae). Publicación ocasional. Museo nacional de Historia Natural (Chile) 16.

  • Gazeau, F., L.M. Parker, S. Comeau, J.P. Gattuso, W.A. O'Connor, S. Martin, H.O. Pörtner, and P.M. Ross. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245.

  • Haraldsson, C., L.G. Anderson, M. Hassellöv, S. Hulth, K. Olsson. 1997. Rapid, high precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep-Sea Research Part I: Oceanographic Research Papers 44: 2031–2044.

  • Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, and T.R. Martz. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6: e28983.

    Article  CAS  Google Scholar 

  • Holcomb, M., D.C. McCorkle, and A.L. Cohen. 2010. Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). Journal of Experimental Marine Biology and Ecology 386: 27–33.

    Article  Google Scholar 

  • Holcomb, M., A.L. Cohen, and D.C. McCorkle. 2012. An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and gender. Biogeosciences 9: 29–39.

    Article  CAS  Google Scholar 

  • Huang, B., W. Xiang, X. Zeng, K.P. Chiang, H. Tian, J. Hu, and H. Hong. 2011. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the Taiwan Strait. Continental Shelf Research 31: 48–56.

    Article  Google Scholar 

  • Kurihara, H., S. Shimode, and Y. Shirayama. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60: 743–750.

    Article  CAS  Google Scholar 

  • Lagos, N.A., J.C. Castilla, and B.R. Broitman. 2008. Spatial environmental correlates of intertidal recruitment: a test using barnacles in Northern Chile. Ecological Monographs 78: 245–261.

    Article  Google Scholar 

  • Lagos, N.A., L. Prado, L. Ramajo, C.A. Vargas, R. Torres, P.H. Manríquez, J.M. Navarro, M.A. Lardies, C. Duarte, and G. Saldías. 2013. Divergent population and community patterns on faunal assemblages associated to intertidal mussel beds: influence of corrosive freshwater input on benthic ecosystems. In this issue.

  • Leiva, G.E., and J.C. Castilla. 2001. A review of the world marine gastropod fishery: evolution of catches, management and the Chilean experience. Reviews in Fish Biology and Fisheries 11: 283–300.

    Article  Google Scholar 

  • Levins, R. 1968. Evolution in changing environments. Princeton: Princeton University Press.

    Google Scholar 

  • Lewis, E. and D. Wallace. 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge, Tennessee, USA.

  • Manríquez, P.H., and J.C. Castilla. 2001. Significance of marine protected areas in central Chile as seeding grounds for the gastropod Concholepas concholepas. Marine Ecology Progress Series 215: 201–211.

    Article  Google Scholar 

  • Marin, V., M.E. Huntley, and B. Frost. 1986. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Marine Biology 93: 49–58.

    Article  Google Scholar 

  • Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.N. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18: 897–907.

  • Meinshausen, M., S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J.-F. Lamarque, K. Matsumoto, S.A. Montzka, S. Raper, K. Riahi, A. Thomson, G.J.M. Velders, and D.P.P. van Vuuren. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109: 213–241.

    Article  CAS  Google Scholar 

  • Melzner, F., P. Stange, K. Trübenbach, J. Thomsen, I. Casties, U. Panknin, and M.A. Gutowska. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One 6: e24223.

    Article  CAS  Google Scholar 

  • Miller, A.W., A.C. Reynolds, C. Sobrino, and G.F. Riedel. 2009. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One 4: e5661.

    Article  Google Scholar 

  • Navarro, J.M., R. Torres, K. Acuña, C. Duarte, P.H. Manriquez, M. Lardies, and V. Aguilera. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90: 1242–1248.

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

    Article  CAS  Google Scholar 

  • Osorio, C. 2002. Moluscos marinos en Chile, especies de importancia económica. Facultad de Ciencias Universidad de Chile. 211 pp.

  • Osorio, C., and N. Bahamonde. 1968. Moluscos bivalvos en pesquerías chilenas. Biología Pesquera 3: 69–128.

    Google Scholar 

  • Palmer, A.R. 1982. Growth in marine gastropods: a non-destructive technique for independently measuring shell and body weight. Malacologia 23: 63–73.

  • Pascal, P.Y., J.W. Fleeger, F. Galvez, and K.R. Carman. 2010. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Marine Pollution Bulletin 60: 2201–2208.

    Article  CAS  Google Scholar 

  • Petersen, K.J., S. Bougrier, A.C. Smaal, P. Garen, S. Robert, J.E.N. Larsen, and E. Brummelhuis. 2004. Intercalibration of mussel Mytilus edulis clearance rate measurements. Marine Ecology Progress Series 267: 187–194.

    Article  Google Scholar 

  • Prado, L., and J.C. Castilla. 2006. The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. Journal of the Marine Biological Association of the United Kingdom 86: 417–421.

    Article  Google Scholar 

  • Ramajo, L., A. Baltanás, R. Torres, P.H. Manríquez, A. Rodriguez-Navarro, and N. Lagos. 2013. Geographic variation in shell morphology of juvenile snails (Concholepas concholepas) along the physical-chemical gradient of the Chilean coast. Journal of Marine Biological Association of the United Kingdom. doi:10.1017/S0025315413000891.

    Google Scholar 

  • Range, P., M.A. Chícharo, R. Ben-Hamadou, D. Piló, M.J. Fernandez-Reiriz, U. Labarta, and L. Chícharo. 2013. Impacts of CO2-induced seawater acidification on coastal Mediterranean bivalves and interactions with other climatic stressors. Regional Environmental Change 1–12.

  • Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, and A.F. Rios. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.

    Article  CAS  Google Scholar 

  • Salisbury, J.E., D. Vandemark, C.W. Hunt, J.W. Campbell, W.R. McGillis, and W.H. McDowell. 2008. Seasonal observations of surface waters in two Gulf of Maine estuary-plume systems: relationships between watershed attributes, optical measurements and surface pCO2. Estuarine, Coastal and Shelf Science 77: 245–252.

    Article  Google Scholar 

  • Strathmann, R.R., and E. Leise. 1979. On feeding mechanisms and clearance rates of molluscan veligers. The Biological Bulletin 157: 524–535.

    Article  Google Scholar 

  • Strickland, J.D.H., and T.R. Parsons. 1968. Determination of reactive phosphorus. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Bulletin 167: 49–56.

    Google Scholar 

  • Stuardo, J. 1979. Sobre la clasificación, distribución y variación de Concholepas concholepas (Bruguiere, 1789): Un estudio de taxonomía Beta. Biología Pesquera Chile 12: 5–38.

    Google Scholar 

  • Stumpp, M., S. Dupont, M.C. Thorndyke, and F. Melzner. 2011. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 160: 320–330.

    Article  CAS  Google Scholar 

  • Stumpp, M., K. Trübenbach, D. Brennecke, M.Y. Hu, and F. Melzner. 2012. Resource allocation and extracellular acid–base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquatic Toxicology 110: 194–207.

    Article  Google Scholar 

  • Thiel, M., E.C. Macaya, E. Acuña, W.E. Arntz, H. Bastías, K. Brokordt, P. Camus, J.C. Castilla, L.R. Castro, M. Cortés, C.P. Dumont, R. Escribano, M. Fernández, J.A. Gajardo, C.F. Gaymer, I. Gomez, A.E. González, H.E. González, P.A. Haye, J.E. Illanes, J.L. Iriarte, D.L. Lancellotti, G. Luna-Jorquera, C. Luxoro, P.H. Manriquez, V. Marín, P. Muñoz, S.A. Navarrete, E. Pérez, E. Poulin, J. Sellanes, H.H. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C.A. Vargas, J.A. Vásquez, and J.M.A. Vega. 2007. The Humboldt Current system of northern and central Chile oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology: An Annual Review 45: 195–344.

    Google Scholar 

  • Thomsen, J., and F. Melzner. 2010. Seawater acidification does not elicit metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157: 2667–2676. doi:10.1007/s00227-010-1527-0.

  • Thomsen, J., I. Castles, C. Pansch, A. Körtzinger, and F. Melzner. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology 19: 1017–1027.

    Article  Google Scholar 

  • Toro, B., J.M. Navarro, and H. Palma-Fleming. 2003. Relationship between bioenergetics responses and organic pollutants in the giant mussel, Choromytilus chorus (Mollusca: Mytilidae). Aquatic Toxicology 63: 257–269.

    Article  CAS  Google Scholar 

  • Torres, R., S. Pantoja, N. Harada, H.E. González, G. Daneri, M. Frangopulos, and M. Fukasawa. 2011. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. Journal of Geophysical Research 116, C09006.

    Google Scholar 

  • Urabe, J., J. Togari, and J.J. Elser. 2003. Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology 9: 818–825.

    Article  Google Scholar 

  • Vargas, C.A., D.A. Narváez, A. Piñones, S.A. Navarrete, N.A. Lagos. 2006. River plume dynamic infuences transport of barnacle larvae in the inner shelf o¡ central Chile. Journal of Marine Biological Association of United Kingdom 86: 1057–1065.

  • Vargas, C.A., M. de la Hoz, V. Aguilera, V. San Martín, P.H. Manríquez, J.M. Navarro, and N.A. Lagos. 2013. CO2-driven ocean acidification reduces larval feeding efficiency and change food selectivity in the mollusk Concholepas concholepas. Journal of Plankton Research 35(5): 1059–1068

  • Widdicombe, S. and J.L. Spicer. 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? Journal of Experimental Marine Biology and Ecology 366: 187–197.

  • Widdicombe, S., S.L. Dashfield, C.L. McNeill, H.R. Needham, A. Beesley, A. McEvoy, and J.A. Berge. 2009. Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Marine Ecology Progress Series 379: 59–75.

    Article  CAS  Google Scholar 

  • Yuras, G., O. Ulloa, and S. Hormazabal. 2005. On the annual cycle of coastal and open ocean satellite chlorophyll off Chile (18–40°S). Geophysical Research Letters 32, L23604. doi:10.1029/2005GL023946.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the skillful help of all assistants involved in this research, especially to Haydee Müller, Karin Acuña, Loreto Mardones, and María Elisa Jara for their logistic support. This work was supported by the Proyecto Anillos ACT-132 by CONICYT (Comisión Nacional de Investigación Científica y Tecnológica) (http://www.eula.cl/anillos_acidificacion); Fondecyt Grant 1090624 (TOA-SPACE Project), and Millennium Nucleus Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS) funded by MINECON NC120086. Finally, the Millennium Institute of Oceanography (IMO) funded by MINECON IC120019 also supported this work during the final stage. CAV is supported by Red Doctoral REDOC.CTA, MINEDUC project UCO1202 at U. de Concepción.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian A. Vargas.

Additional information

Communicated by Wayne S. Gardner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, C.A., Aguilera, V.M., Martín, V.S. et al. CO2-Driven Ocean Acidification Disrupts the Filter Feeding Behavior in Chilean Gastropod and Bivalve Species from Different Geographic Localities. Estuaries and Coasts 38, 1163–1177 (2015). https://doi.org/10.1007/s12237-014-9873-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9873-7

Keywords

Navigation