Skip to main content
Log in

Stable Isotope Discrimination by Consumers in a Tropical Mangrove Food Web: How Important Are Variations in C/N Ratio?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Stable isotopes are widely used as tracers in food webs and as indicators of the trophic levels (TL) of consumers. The objectives of this study were to verify a possible ecosystem-wide increase in the relative contribution of the heavy isotope with trophic level, for carbon and nitrogen, and to analyze the relationships of C/N ratios and stable isotope ratios of consumers in a tropical mangrove food web. Samples of primary producers and consumers (benthic invertebrates, zooplankton, 31 fish species, and other vertebrates) were collected in the Curuçá Estuary, northern Brazil. Our results showed that the relative amount of the heavy isotope significantly increased with TL. Linear models of δ 15N vs TL were highly significant and explained 75 % of the total variability in food web δ 15N. Models for δ 15N yielded a much better fit than the models built for δ 13C, mainly due to a higher variability in source δ 13C and stronger trophic discrimination for 15N than for 13C. Enrichment in δ 15N was 2.3 ± 0.20 ‰ per TL (all data). The increase in δ 13C with TL, in spite of being significant, could not be used to estimate trophic enrichment, since it was affected by the concentration of predatory fish in a 13C-rich algae-based food web. Furthermore, the increase in δ 13C with TL could be fully explained by the change in C/N ratio (i.e., lipid content) with TL. Our results demonstrate the importance of considering TL and C/N ratios in stable isotope analyses of food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abed-Navandi, D., and P. Dworschak. 2005. Food sources of tropical thalassinidean shrimps: a stable-isotope study. Marine Ecology Progress Series 291: 159–168.

    Article  CAS  Google Scholar 

  • Bearhop, S., S. Waldron, S.C. Votier, and R.W. Furness. 2002. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiological and Biochemical Zoology 75: 451–458.

    Article  CAS  Google Scholar 

  • Benstead, J.P., J.G. March, B. Fry, K.C. Ewel, and C.M. Pringle. 2006. Testing isosource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87: 326–333.

    Article  Google Scholar 

  • Bodin, N., F. Le Loc’h, and C. Hily. 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. Journal of Experimental Marine Biology and Ecology 34: 168–175.

    Article  Google Scholar 

  • Boecklen, W.J., C.T. Yarnes, B.A. Cook, and A.C. James. 2011. On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics 4: 411–440.

    Article  Google Scholar 

  • Bond, A., and A. Diamond. 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Applied Ecology 21: 1017–1023.

    Article  Google Scholar 

  • Bosley, K.L., D.A. Witing, R. Christopher, and S.C. Wainright. 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Marine Ecology Progress Series 23: 233–240.

    Article  Google Scholar 

  • Bouillon, S., T. Moens, I. Overmeer, N. Koedam, and F. Dehairs. 2004. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series 278: 77–88.

    Article  CAS  Google Scholar 

  • Brenner, M., and U. Krumme. 2007. Tidal migration and patterns in feeding of the four-eyed fish Anableps anableps L. in a north Brazilian mangrove. Journal of Fish Biology 70: 406–427.

    Article  Google Scholar 

  • Breusch, T.S., and A.R. Pagan. 1979. A simple test for heteroscedasticity and random coefficient variation. Econometrica 47: 1287–1294.

    Article  Google Scholar 

  • Bucci, J.P., W.J. Showers, S. Rebach, D. Demaster, and B. Genna. 2007a. Stable isotope analyses (δ15N and δ13C) of the trophic relationships of Callinectes sapidus in two North Carolina estuaries. Estuaries and Coasts 30: 1049–1059.

    Article  CAS  Google Scholar 

  • Bucci, J.P., S. Rebach, D. DeMaster, and W.J. Showers. 2007b. A comparison of blue crab and bivalve δ15N tissue enrichment in two North Carolina estuaries. Environmental Pollution 145: 299–308.

    Article  CAS  Google Scholar 

  • Carscallen, W.M.A., K. Vandenberg, J.M. Lawson, N.D. Martinez, and T.N. Romanuk. 2012. Estimating trophic position in marine and estuarine food webs. Ecosphere 3. 10.1890/ES11-00224.1

  • Caut, S., E. Angulo, and F. Courchamp. 2009. Variation in discrimination factors (Delta N-15 and Delta C-13): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.

    Article  CAS  Google Scholar 

  • Chikaraishi, Y., Y. Kashiyama, N.O. Ogawa, H. Kitazato, and N. Ohkouchi. 2007. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Marine Ecology Progress Series 342: 85–90.

    Article  CAS  Google Scholar 

  • Christensen, V., and D. Pauly eds. 1993. Trophic models of aquatic ecosystems. ICLARM Conference Proceedings 26, 390 pp.

  • Connolly, R., J. Hindell, and D. Gorman. 2005. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology Progress Series 286: 69–79.

    Article  Google Scholar 

  • Cortés, E. 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science 56: 707–717

  • Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3: 53–92.

    Article  CAS  Google Scholar 

  • Dame, J.K., and R.R. Christian. 2008. Evaluation of ecological network analysis: validation of output. Ecological Modelling 21: 327–338.

    Article  Google Scholar 

  • Delong, M.D., and J.H. Thorp. 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.

    Article  Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263.

    Article  CAS  Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Eggers, T., and T.H. Jones. 2000. You are what you eat… or are you? Trends in Ecology Evolution 15: 265–266.

    Article  Google Scholar 

  • Fantle, M.S., A.I. Dittel, S.M. Schwalm, C.E. Epifanio, and M.L. Fogel. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120: 416–426.

    Article  Google Scholar 

  • Faraway, J.J. 2002. Practical regression and ANOVA using R. Available at: http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf. Accessed 30 July 2012.

  • Focken, U., and K. Becker. 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia 115: 337–343.

    Article  Google Scholar 

  • Fogel, M.L., and N. Tuross. 2003. Extending the limits of paleodietary studies of humans with compound specific carbon isotope analysis of amino acids. Journal of Archaeological Science 30: 535–545.

    Article  Google Scholar 

  • Froese, R., and D. Pauly. 2007. FishBase. Available: http://www.fishbase.org. Accessed 30 May 2007.

  • Fry, B., A. Joern, and P.L. Parker. 1978. Grasshopper food web analysis—use of carbon isotope ratios to examine feeding relationships among terrestrial herbivores. Ecology 59: 498–506.

    Article  Google Scholar 

  • Galván, D., C. Sweetling, and N. Polunin. 2012. Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169: 1083–1093.

    Article  Google Scholar 

  • Gannes, L.Z., D.M. O’Brien, and C. Martinez del Rio. 1997. Stable isotopes in animal ecology: assumptions, caveats, a call for more laboratory experiments. Ecology 7: 1271–1276.

    Article  Google Scholar 

  • Giarrizzo, T., and U. Saint-Paul. 2008. Ontogenetic and seasonal shifts in the diet of the pemecou sea catfish Sciades herzbergii (Siluriformes: Ariidae), from a macrotidal mangrove creek in the Curuçá estuary, Northern Brazil. Revista de Biología Tropical 56: 861–873.

    Google Scholar 

  • Giarrizzo, T., U. Krumme, and W. Wosniok. 2010. Size-structured migration and feeding patterns in the banded puffer fish Colomesus psittacus (Tetraodontidae) from north Brazilian mangrove creeks. Marine Ecology Progress Series 419: 157–170.

    Article  Google Scholar 

  • Giarrizzo, T., R. Schwamborn, and U. Saint-Paul. 2011. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuarine, Coastal and Shelf Science 95: 447–457.

    Article  CAS  Google Scholar 

  • Groemping, U. 2006. Relative importance for linear regression in R: the package relaimpo. Journal of Statistical Software 17: 1–27.

    Article  Google Scholar 

  • Guelinckx, J., F. Dehairs, and F. Ollevier. 2008. Effect of digestion on the delta C-13 and delta N-15 of fish-gut contents. Journal of Fish Biology 72: 301–309.

    Article  Google Scholar 

  • Haines, E.B., and C.L. Montague. 1979. Food sources of estuarine invertebrates analyzed using C-13/C-12 ratios. Ecology 60: 48–56.

    Article  Google Scholar 

  • Hammer, B.T., M.L. Fogel, and T.C. Hoering. 1998. Stable carbon isotope ratios of fatty acids in seagrass and redhead ducks. Chemical Geology 152: 29–41.

    Article  Google Scholar 

  • Harrigan, P., J.C. Zieman, and S.A. Macko. 1989. The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on a combined stomach content and stable isotope analysis. Bulletin of Marine Science 44: 65–77.

    Google Scholar 

  • Hobson, K.A., D.M. Schell, D. Renouf, and E. Noseworthy. 1996. Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Canadian Journal of Fisheries and Aquatic Science 53: 528–533.

    Article  Google Scholar 

  • Hoffman, J.C., and T.T. Sutton. 2010. Lipid-correction for stable isotope analyses of deep-sea fishes. Deep-Sea Reserach 57: 956–964.

    Article  CAS  Google Scholar 

  • Hubert, M., G. Pison, A. Struyf, and S. van Aelst. 2004. Theory and applications of recent robust methods. Basel: Birkhäuser.

    Book  Google Scholar 

  • Jacob, U., K. Mintenbeck, T. Brey, R. Knust, and K. Beyer. 2005. Stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series 287: 251–253.

    Article  Google Scholar 

  • Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen, and R.I. Jones. 2006. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology 43: 1213–1222.

    Article  CAS  Google Scholar 

  • Kline Jr., T.C., and D. Pauly. 1998. Cross-validation of trophic level estimates from a mass-balance model of Prince William Sound using 15N/14N data. In Fishery stock assessment models, ed. T.J.I.I. Quinn, F. Funk, J. Heifetz, J.N. Ianelli, J.E. Powers, et al., 693–702. Fairbanks: University of Alaska Sea Grant.

    Chapter  Google Scholar 

  • Koenker, R. 1981. A note on studentizing a test for heteroskedasticity. Journal of Econometrics 29: 305–326.

    Google Scholar 

  • Krumme, U., H. Keuthen, M. Barletta, and U. Saint-Paul. 2005. Contribution to the feeding ecology of the predatory wingfin anchovy Pterengraulis therinoides (L.) in north Brazilian mangrove creeks. Journal of Applied Ichthyology 21: 469–477.

    Article  Google Scholar 

  • Layman, C., M.S. Araujo, R. Boucek, E. Harrison, Z.R. Jud, P. Matich, C.M. Hammerschlag-Peyer, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87: 545–562.

    Article  Google Scholar 

  • Lindeman, R.H., P.F. Merenda, and R.Z. Gold. 1980. Introduction to bivariate and multivariate analysis. Illinois: Scott, Foresman and Company.

    Google Scholar 

  • Logan, J.M., T.D. Jardine, T.J. Miller, S.E. Bunn, R.A. Cunjak, and M.E. Lutcavage. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77: 838–846.

    Article  Google Scholar 

  • Loneragan, N.R., S.E. Bunn, and D.M. Kellaway. 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130: 289–300.

    Article  Google Scholar 

  • MacAvoy, S.E., S.A. Macko, and L.S. Arneson. 2005. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Canadian Journal of Zoology 83: 631–641.

    Article  CAS  Google Scholar 

  • Mann, H.B., and D.R. Whitney. 1947. On a test whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18: 50–60.

    Article  Google Scholar 

  • Mantel, S.K., M. Salas, and D. Dudgeon. 2004. Foodweb structure in a tropical Asian forest stream. Journal of the North American Benthological Society 23: 728–755.

    Article  Google Scholar 

  • March, J.G., and C.M. Pringle. 2003. Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica 35: 84–93.

    Google Scholar 

  • Martínez del Río, C., and B.O. Wolf. 2005. Mass-balance models for animal isotopic ecology. In Physiological and ecological adaptations to feeding in vertebrates, ed. M. Stark, 141–174. Enfield: Science.

    Google Scholar 

  • McClelland, J.W., and J.P. Montoya. 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83: 2173–2180.

    Article  Google Scholar 

  • McConnaughey, T., and C.P. McRoy. 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53: 257–262.

    Article  CAS  Google Scholar 

  • McCue, M.D. 2008. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in Hissing Cockroaches Gromphadorhina portentosa. Physiological and Biochemical Zoology 81: 14–24.

    Article  CAS  Google Scholar 

  • McCutchan, J.H., W.M. Lewis, C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Michener, R.H., and L. Kaufman. 2007. Stable isotope ratios as tracers in marine foodwebs: an update. In Stable isotopes in ecology and environmental sciences, ed. K. Lajtha and R. Michener, 238–282. Oxford: Blackwell.

    Chapter  Google Scholar 

  • Milessi, A.C., D. Calliari, L. Rodríguez-Graña, D. Conde, J. Sellanes, and L. Rodríguez-Gallego. 2010. Trophic mass-balance model of a subtropical coastal lagoon, including a comparison with a stable isotope analysis of the food-web. Ecological Modelling 221: 2859–2869.

    Article  CAS  Google Scholar 

  • Minagawa, M., and E. Wada. 1984. Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Mintenbeck, K., T. Brey, U. Jacob, R. Knust, and U. Struck. 2008. How to account for the lipid effect on carbon stable isotope ratio (δ13C)—sample treatment effects and model bias. Journal of Fish Biology 72(4): 815–830. doi:10.1111/j.1095-8649.2007.01754.x.

    Article  CAS  Google Scholar 

  • Monteiro, D.P., T. Giarrizzo, and V. Isaac. 2009. Feeding ecology of juvenile dog snapper Lutjanus jocu (Bloch and Shneider, 1801) (Lutjanidae) in intertidal mangrove creeks in Curuçá Estuary (Northern Brazil). Brazilian Archives of Biology and Technology 52: 1421–1430.

    Article  Google Scholar 

  • Morrison, D.J., K. Cooper, and T. Preston. 2010. Reconstructing bulk isotope ratios from compound-specific isotope ratios. Rapid Communications in Mass Spectrometry 24: 1799–1804.

    Article  CAS  Google Scholar 

  • Nilsen, M., T. Pedersen, E.M. Nilssen, and S. Fredriksen. 2008. Trophic studies in a high latitude ecosystem—a comparison of stable isotope analyses (δ13C and δ15N) and trophic level estimates from a mass-balance model. Canadian Journal of Fisheries and Aquatic Science 65: 2791–2806.

    Article  CAS  Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: coping with too much variation. PloS One 5(3): e9672.

    Article  Google Scholar 

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Phillips, D.L., S.D. Newsome, and J.W. Gregg. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 14: 520–527.

    Article  Google Scholar 

  • Pinnegar, J.K., and N.V.C. Polunin. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13: 225–231.

    Article  Google Scholar 

  • Polunin, N.V.C., and J.K. Pinnegar. 2000. Trophic level dynamics inferred from stable isotopes of carbon and nitrogen. In Briand, F. ed. Fishing down the Mediterranean food-webs? CIESM Workshop Series 12:69–72.

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D.M., C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi, and C.G. Montana. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Article  Google Scholar 

  • Rousseeuw, P.J., and A.M. Leroy. 1987. Robust regression and outlier detection. New York: Wiley.

    Google Scholar 

  • Royston, P. 1982. An extension of Shapiro and Wilk’s W test for normality to large samples. Applied Statistics 31: 115–124.

    Article  Google Scholar 

  • Schmidt, K., A. Atkinson, D. Stubing, J.W. McClelland, J.P. Montoya, and M. Voss. 2003. Trophic relationships among Southern Ocean copepods and krill: some uses and limitation. Limnology and Oceanography 48: 277–289.

    Article  Google Scholar 

  • Schmidt, T.C., L. Zwank, M. Elsner, M. Berg, R.U. Meckenstock, and S.B. Haderlein. 2004. Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Analytical and Bioanalytical Chemistry 378: 283–300.

    Article  CAS  Google Scholar 

  • Schwamborn, R., and M.M. Criales. 2000. Feeding strategy and daily ration of juvenile pink shrimp (Farfantepenaeus duorarum) in a South Florida seagrass bed. Marine Biology 137: 139–147.

    Article  Google Scholar 

  • Schwamborn, R., M. Voss, W. Ekau, and U. Saint-Paul. 1999. Stable isotope composition of particulate organic matter and zooplankton in northeast Brazilian shelf waters. Archives of Fishery and Marine Research 47: 201–210.

    Google Scholar 

  • Schwamborn, R., W. Ekau, M. Voss, and U. Saint-Paul. 2002. How important are mangroves as a carbon source for decapod crustacean larvae in a tropical estuary? Marine Ecology Progress Series 229: 195–205.

    Article  CAS  Google Scholar 

  • Smyntek, P.M., M.A. Teece, K.L. Schulz, and S.J. Thackeray. 2007. A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnology and Oceanography 52: 2135–2146.

    Article  CAS  Google Scholar 

  • Steffan, S.A., Y. Chikaraishi, D.R. Horton, N. Ohkouchi, M.E. Singleton, E. Miliczky, D.B. Hogg, and V.P. Jones. 2013. Trophic hierarchies illuminated via amino acid isotopic analysis. PloS One 8(9): e76152. doi:10.1371/journal.pone.0076152.

    Article  CAS  Google Scholar 

  • Sweeting, C.J., N.V.C. Polunin, and S. Jennings. 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Communications in Mass Spectrometry 20: 595–601.

    Article  CAS  Google Scholar 

  • Sweeting, C.J., J. Barry, C. Barnes, N.V.C. Polunin, and S. Jennings. 2007. Effects of body size and environment on diet-tissue δ15N fractionation in fishes. Journal of Experimental Marine Biology and Ecology 340: 1–10.

    Article  CAS  Google Scholar 

  • Tieszen, L.L., T.W. Boutton, K.G. Tesdahl, and N.A. Slade. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implication for δ13C analysis of diet. Oecologia 57: 32–37.

    Article  Google Scholar 

  • Urton, E.J.M., and K.A. Hobson. 2005. Intrapopulation variation in gray wolf isotope (δ15N and δ13C) profiles: implications for the ecology of individuals. Oecologia 145: 317–326.

    Article  Google Scholar 

  • Vander Zanden, M.J., and J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vander Zanden, M.J., J.M. Casselman, and J.B. Rasmussen. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401: 464–467.

    Article  CAS  Google Scholar 

  • Vanderklift, M., and S. Ponsard. 2003. Sources of variation in consumer-diet delta 15N enrichment: a meta-analysis. Oecologia 136: 169–182.

    Article  Google Scholar 

  • Wilson, R.M., J. Chanton, G. Lewis, and D. Nowacek. 2009. Combining organic matter source and relative trophic position determinations to explore trophic structure. Estuaries and Coasts 32: 999–1010.

    Article  CAS  Google Scholar 

  • Wolff, M., V. Koch, and V. Isaac. 2000. A trophic flow model of the Caeté mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Estuarine, Coastal and Shelf Science 50: 789–803.

    Article  Google Scholar 

  • Wyatt, A.S.J., A.M. Waite, and S. Humphries. 2010. Variability in isotope discrimination factors in coral reef fishes: implications for diet and food web reconstruction. PloS One 5(10): e13682. doi:10.1371/journal.pone.0013682.

    Article  Google Scholar 

  • Zar, J.H. 1999. Biostatistical analysis. New Jersey: Prentice.

    Google Scholar 

Download references

Acknowledgments

We thank the Brazilian agency IBAMA for permit number 02001.005636/2004-03. We acknowledge the detailed comments of three anonymous referees who helped to improve the manuscript. Both authors received CNPq productivity grants (grant nos. 304174/2008-4 and 308278/2012-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schwamborn.

Additional information

Communicated by Marianne Holmer

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table ESM1

Bivariate linear models for stable isotopes (δ 13C and δ 15N) vs trophic level and carbon/nitrogen ratios. (DOCX 13 kb)

Table ESM2

Multiple linear models for stable nitrogen isotopes (δ 15N). (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwamborn, R., Giarrizzo, T. Stable Isotope Discrimination by Consumers in a Tropical Mangrove Food Web: How Important Are Variations in C/N Ratio?. Estuaries and Coasts 38, 813–825 (2015). https://doi.org/10.1007/s12237-014-9871-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9871-9

Keywords

Navigation