Skip to main content

Advertisement

Log in

The Impact of Sediment and Carbon Fluxes on the Biogeochemistry of Methane and Sulfur in Littoral Baltic Sea Sediments (Himmerfjärden, Sweden)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm year−1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C m−2 year−1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol m−2 year−1), methane concentrations increased to >2 mmol L−1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol m−2 year−1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol m−2 year−1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α = 2.8–3.1 year−1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appleby, P.G., and F. Oldfield. 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.

    Article  CAS  Google Scholar 

  • Bange, H.W., U.H. Bartel, S. Rapsomanikis, and M.O. Andreae. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochemistry Cycle 8: 465–480.

    Google Scholar 

  • Bartnicki, J., and S. Valiyaveetil. 2008. Estimation of atmosphere Nitrogen deposition to the Baltic Sea in the periods 1997-2003 and 2003-2006. The report for HELCOM (http://www.helcom.fi/stc/files/Publications/OtherPublications/EMEP_Estimation_of_atmospheric_N_deposition_%20to_the_BS.pdf).

  • Beal, J.H., H.C. House, and J.V. Orphan. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325: 184–187.

    Article  CAS  Google Scholar 

  • Blank, M., A.O. Laine, K. Jürss, and R. Bastrop. 2008. Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species’ current distribution in the Baltic Sea. Helgoland Marine Resource 62: 129–141.

    Article  Google Scholar 

  • Bianchi, T.S., E. Engelhaupt, B.A. Mckee, S. Miles, R. Elmgren, A. Hajdu, C. Savage, and M. Baskaran. 2002. Do sediments from coastal site accurately reflect time trends in water column phytoplankton? A test from Himmerfjärd Bay (Baltic Sea proper). Limmology and Oceanography 47: 1537–1544.

    Article  Google Scholar 

  • Boetius, A., K. Ravenschlag, C.J. Schubert, D. Rickert, F. Widdel, A. Gleseke, R. Amann, B.B. Jørgensen, U. Witte, and O. Pfannkuche. 2000. A marine microbial consurtium aooarently mediating anaerobic oxidation of methane. Nature 407: 623–626.

    Article  CAS  Google Scholar 

  • Borges, A.V., and G. Abril. 2011. Carbon dioxide and methane dynamics in estuaries. In Treatise on estuarine and coastal science 5, ed. E. Wolanski and D.S. McLusky, 119–161. Waltham: Academic.

    Chapter  Google Scholar 

  • Burdige, D.J., and T. Komada. 2011. Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments. Limmology and Oceanography 56(5): 1781–1796.

    Article  CAS  Google Scholar 

  • Boudreau, P. Bernard. 1997. Diagenetic models and their implementation. Heidelberg: Springer-Verlag.

  • Callaway, J.C., R.D. DeLaune, and W.H. Patrick Jr. 1996. Chernobyl 137Cs used to determine sediment accretion rates at selected northern European coastal wetlands. Limmology and Oceanography 41(3): 444–450.

    Article  CAS  Google Scholar 

  • Canfield, E.Donald. 2005. The sulfur cycle. In Aquatic geomicrobiology: 48 (Advances in marine biology), ed. D.E. Canfield, B. Thamdrup, and E. Kristensen, 314–374. California: Elsevier Academic.

    Google Scholar 

  • Chanton, P.J., C.S. Martens, and C.A. Kelley. 1989. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography 34(5): 807–819.

    Google Scholar 

  • Claypool, G.E., and I.R. Kvenvolden. 1983. Methane and other hydrocarbon gases in marine sediment. Annual Review of Earth and Planetary Sciences 11: 299–327.

    Article  CAS  Google Scholar 

  • Cline, D.Joel. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography: Methods 14: 454–458.

    Article  CAS  Google Scholar 

  • Conley, D.J., S. Björck, E. Bonsdorff, et al. 2009. Hypoxia–related processes in the Baltic Sea. Environmental Science and Technology 43(10): 3412–3420.

    Google Scholar 

  • Conley, D.J., J. Carstensen, J. Aigars. et al. 2011 Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science & Technology 45: 6777–6783.

    Google Scholar 

  • Crill, P.M., and C.S. Martens. 1986. Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochimica et Cosmochimica Acta 50: 2089–2097.

    Article  CAS  Google Scholar 

  • Cutshall, N.H., I.L. Larsen, and C.R. Olsen. 1983. Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nuclear Instruments and Methods A306: 309–312.

    Google Scholar 

  • Elverfeldt, J.S., M. Schlüter, T. Feseker, and M. Kölling. 2005. Rhizon sampling of porewaters near the sediment–water interface of aquatic systems. Limnology and Oceanography: Methods 3: 361–371.

    Article  Google Scholar 

  • Engqvist, A., and A. Omstedt. 1992. Water exchange and density structure in a multi-basin estuary. Continental Shelf Research 12(9): 1003–1026.

    Google Scholar 

  • Fossing, H., T.G. Ferdelman, and P. Berg. 2000. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South–East Atlantic off Namibia. Geochimica et Cosmochimica Acta 64(5): 897–910.

    Article  CAS  Google Scholar 

  • Hall, P.O.J., and R.C. Aller. 1992. Rapid, small-volume, flow injection analysis for ∑ CO2 and NH +4 in marine and freshwaters. Limnology and Oceanography 37: 1113–1119.

    Article  CAS  Google Scholar 

  • Hariss, R.C., D.I. Sebacher, K.B. Bartlett, D.S. Bartlett, and P.M. Crill. 1988. Sources of atmospheric methane in the south Florida environment. Global Biogeochemial Cycles 2: 231–243.

    Article  Google Scholar 

  • Hartnett, H.E., R.G. Keil, J.I. Hedges, and A.H. Devol. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574.

    Article  CAS  Google Scholar 

  • Hedman, J.E., J.S. Gunnarsson, G. Samuelsson, and F. Gilbert. 2011. Particle reworking and solute transport by the sediment-living polycheates Marenzelleria neglecta and Hediste diversicolor. Journal of Experimental Marine Biology and Ecology 407: 294–301.

    Article  CAS  Google Scholar 

  • Heinsalu, A., S. Veski, and J. Vassiljer. 2000. Paleoenvironment and shoreline displacement on Suursaari island, the Gulf of Finland. Bulletin of he Geological Society of Finland 71(part 1–2): 24–26.

    Google Scholar 

  • Heyer, J., U. Berger, and R. Suckow. 1990. Methanogenesis in different parts of a brackish water ecosystem. Limmologica 20: 135–139.

    Google Scholar 

  • Heyer, J., and U. Berger. 2000. Methane emission from the coastal area in the southern Baltic Sea. Estuarine, Coastal and Shelf Science 51: 13–30.

    Article  CAS  Google Scholar 

  • Holby, O., and S. Evans. 1996. The vertical distribution of Chernobyl-derived radionuclides in a Baltic Sea sediment. Journal of Environmental Radioactivity 33(2): 129–145.

    Article  CAS  Google Scholar 

  • Holler, T., G. Wegener, H. Niemann, C. Deusner, T.G. Ferdelman, A. Boetius, B. Brunner, and F. Widdel. 2011. Carbon and sulfur back flux during anaerobic oxidation of methane and coupled sulfate reduction. Proceedings of the National Academy of Sciences of the USA 108(52): E1484–E1490.

    Google Scholar 

  • Holmkvist, L., T.G. Ferdelman, and B.B. Jørgensen. 2011. A cruptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta 75: 3581–3599.

    Article  CAS  Google Scholar 

  • Ilus, E., and R. Saxén. 2005. Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. Journal of Environmental Radioactivity 82: 199–211.

    Article  CAS  Google Scholar 

  • Ilus, E., J. Mattila, S.P. Nielsen, E. Jakobson, J. Herrmann, V. Graveris, V. Vilimaite-Silobritiene, M. Suplinska, A. Stepanow, and M. Lüning. 2007. Long-lived radionuclides in the seabed of the Baltic Sea. Report of the sediment Baseline study of HELCOM MORS-PRO in 2000–2005. Baltic Sea Environment Proceeding 10.

  • Iversen, N., and B.B. Jørgensen. 1985. Anaerobic methane oxidation rates at the sulfate–methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography 30: 944–955.

    Article  CAS  Google Scholar 

  • Jørgensen, B.B., and T. Fenchel. 1974. The sulfur cycle of a marine sediment model system. Marine Biology 24: 189–201.

    Article  Google Scholar 

  • Jørgensen, B.Bo. 1978. Comparison of methods for quantification of bacterial sulfate reduction in coastal marine sediments 1. Measurement with radiotracer techniques. Geomicrobiology Journal 1(1): 11–27.

    Article  Google Scholar 

  • Jørgensen, B.Bo. 2006. Bacteria and marine geochemistry. In Marine geochemistry, 2nd ed, ed. H.D. Schulz and M. Zabel, 169–201. Berlin: Springer.

    Chapter  Google Scholar 

  • Jørgensen, B.B., and R.J. Parkes. 2010. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnology and Oceanography 55(3): 1338–1352.

    Article  Google Scholar 

  • Judd, A.G., M. Hovland, L.I. Dimitrov, S. Garci, A. Gil, and V. Jukes. 2002. Geological methane budget at continental margins, and its influence on climate change. Geofluids 2: 109–126.

    Article  CAS  Google Scholar 

  • Kallmeyer, J., T.G. Ferdelman, A. Weber, H. Fossing, and B.B. Jørgensen. 2004. A cold chromium distillation procedure for radiolabeled sulphide applied to sulphate reduction measurements. Limnology and Oceanography: Methods 2: 171–180.

    Article  Google Scholar 

  • Kautsky, Hans. 2008. Askö and Himmerfjärden. In Ecology of Baltic coastal waters, ed. U. Schiewer, 335–357. Berlin: Spinger.

    Chapter  Google Scholar 

  • Kipphut, G.W., and C.S. Martens. 1982. Biogeochemical cycling in an organic-rich coastal marine basin—3. Dissolved gas transport in methane-saturated sediments. Geochimica et Cosmochimica Acta 46: 2049–2060.

    Article  CAS  Google Scholar 

  • Knab, N. J., A. D. Dale, K. Lettmann, H. Fossing, and B.B. Jørgensen. 2008. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochimica et Cosmochimica Acta 72: 3746–3757.

    Article  CAS  Google Scholar 

  • Knab, N.J., B.A. Cragg, R.R.C. Hornibrook, L. Holmvist, R.D. Pancost, C. Borowski, R.K. Parkes, and B.B. Jørgensen. 2009. Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences 6: 1505–1518.

    Google Scholar 

  • Larsson, U., R. Elmgren, and F. Wulff. 1985. Eutrophication and the Baltic Sea—causes and consequences. Ambio 14: 9–14.

    CAS  Google Scholar 

  • Lovley, D.R., and M.J. Klug. 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Applied and Environmental Microbiology 45: 187–192.

    CAS  Google Scholar 

  • Lustwerk, R.L., and D.J. Burdige. 1995. Elimination of dissolved sulphide interface in the flow injection determination of ∑CO2 by addintion of molybdate. Limnology and Oceanography 40: 1011–1012.

    Article  CAS  Google Scholar 

  • Lyimo, T.J., A. Pol, and H.J.M. Op den Camp. 2002. Methane emission, sulfide concentration and redox potential profiles in Mtoni mangrove sediment, Tanzania. Western Indian Ocean Journal of Marine Science 1(1): 71–80.

    Google Scholar 

  • Mattila, J., H. Kankaanpää, and E. Ilus. 2006. Estimation of recent sedimentary accumulation rates in the Baltic Sea using artificial radionuclides 137Cs and 239, 240 Pu as time markers. Boreal Environment Research 11: 95–107.

    CAS  Google Scholar 

  • Martens, C.S., and J.V. Klump. 1980a. Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment–water exchange processes. Geochimica et Cosmochimica Acta 44: 471–490.

    Article  CAS  Google Scholar 

  • Martens, C.S., and J.V. Klump. 1980b. Biogeochemical cycling in an organic-rich coastal marine basin—4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochimica et Cosmochimica Acta 48: 1987–2004.

    Article  Google Scholar 

  • März, C., J. Hoffmann, U. Bleil, G.J. de Lange, and S. Kasten. 2008. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambesi deep-sea fan (SW Indian Ocean). Marine Geology 255: 118–130.

    Article  Google Scholar 

  • Meili, M., P. Jonsson, and R. Carman. 1998. 137Cs dating of laminated sediments in Swedish archipelago areas of the Baltic Sea. In Dating of sediments and determination of sedimentation rate, ed. Erkki Ilus, 127–130. Helsinki: STUK–Radiation and Nuclear Safety Authority (Finland).

    Google Scholar 

  • Meybeck, M., D. Chapman, and R. Helmer (eds.). 1989. Global freshwater quality. A first assessment, 306. Oxford: Blackwell.

    Google Scholar 

  • Middelburg, I.I., I. Nieuwenhuize, N. Iversen, N. Høgh, H. De Wilde, W. Heider, R. Seifert, and O. Chirstof. 2002. Methane distribution in European tidal estuaries. Biogeochemsitry 59: 95–119.

    Article  Google Scholar 

  • Miller, L.G., and R.S. Oremland. 1988. Methane efflux from the pelagic regions of four lakes. Global Biogeochemical Cycles 2: 269–277.

    Google Scholar 

  • Nahlik, A.M., and W.J. Mitsch. 2011. Methane emission from tropical freshwater wetlands located in different climatic zones of Costa Rica. Global Change Biology 17: 1321–1334.

    Google Scholar 

  • Nauhaus, K., M. Albrecht, M. Elvert, A. Boetius, and F. Widdel. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane. Environmental Microbiology 9(1): 187–196.

    Google Scholar 

  • Oremland, R.M., and S. Polcin. 1982. Methanogenesis and sulphate reduction: competitive and noncompetitive sustrates in estuarine sediments. Applied and Environmental Microbiology 44: 1270–1276.

    CAS  Google Scholar 

  • Orphan, V.T., C.H. House, K.U. Hinrichs, K.D. McKeegan, and E.F. Delong. 2001. Methane-consuming Archaea releaved by directly coupled isotope and phylogentic analysis. Science 293: 484–486.

    Article  CAS  Google Scholar 

  • Parkes, R.J., B.A. Cragg, N. Banning, et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology 9: 1146–1161.

    Article  CAS  Google Scholar 

  • Piker, L., R. Schmaljohann, and J.F. Imhoff. 1998. Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993–1996). Aquatic Microbial Ecology 14: 183–193.

    Article  Google Scholar 

  • Purvaja, R., and R. Ramesh. 2001. Natural and anthropogenic methane emission from coastal wetlands of south India. Environmental Management 27(4): 547–557.

    Google Scholar 

  • Reeburgh, S.William. 1975. Methane consumption in Cariaco trench waters and sediments. Earth and Planetary Science Letters 28: 337–344.

    Article  Google Scholar 

  • Regnier, P., A.W. Dale, S. Arndt, D.E. LaRowe, J. Mogollón, and P. Van Cappellen. 2011. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth-Science Reviews 106: 105–130.

    Article  CAS  Google Scholar 

  • Reuss, N., D.J. Conley, and T.S. Bianchi. 2005. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry 95: 283–302.

    Article  CAS  Google Scholar 

  • Riedinger, N., B. Brunner, M.J. Formolo, E. Solomon, S. Kasten, M. Strasser, and T.G. Ferdelman. 2010. Oxidative Sulfur cycling in the deep biosphere of the Naikai Trough, Japan. Geology Society of America 38: 851–854.

    Google Scholar 

  • Rosenberg, R., R. Elmgren, S. Fleisher, P. Jonsson, G. Persson, and H. Dahlin. 1990. Marine eutrophication case studies in Sweden. Ambio 19: 102–108.

    Google Scholar 

  • Savage, C., P.R. Reavitt, and R. Elmgren. 2010. Distribution and retention of effluent nitrogen in surface sediment of a coastal bay. Limnology and Oceanography 49: 1503–1511.

    Article  Google Scholar 

  • Schubert, C.J., J. Niggemann, G. Klockgether, and T.G. Ferdelman. 2005. Chlorin index: a new parameter for organic matter freshness in sediments. Geochemistry, Geophysics, Geosystems 6(3): 1–12.

    Article  Google Scholar 

  • Schulz, H.D. 2006. Quantification of early diagenesis: dissolved consituents in marine porewater. In Marine Geochemistry 2, ed. H.D. Schulz and M. Zabel, 73–124. Berlin: Springer.

  • Smith, F.S., S.M. Elliott, and S.K. Lyons. 2010. Methane emissions from extinct megafauna. Nature Geoscience 3: 374–375.

    Article  CAS  Google Scholar 

  • Stigebrandt, Anders. 1991. Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas. Limmology and Oceanography 36(6): 444–454.

    Article  CAS  Google Scholar 

  • Tarpgaard, I.H., H. Røy, and B.B. Jørgensen. 2011. Concurrent low and high affinity sulfate reduction kinetics in marine sediment. Geochimica et Cosmochimica Acta 75(11): 2997–3010.

    Article  CAS  Google Scholar 

  • Thode-Andersen, S., and B.B. Jørgensen. 1989. Sulfate reduction and the formation of 35S labeled FeS, FeS2 and SO in coastal marine sediments. Limmology and Oceanography 34: 793–806.

    Article  CAS  Google Scholar 

  • Treude, T., A. Boetius, K. Knittel, K. Wallmann, and B.B. Jørgensen. 2003. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecological Progess 264: 1–14.

    Article  CAS  Google Scholar 

  • Treude, T., M. Krüger, A. Boetius, and B.B. Jørgensen. 2005. Environmental control on anaerobic oxidation of methane in the gassy sediment of Eckernförde Bay (German Baltic). Limmology and Oceanography 50(6): 1771–1786.

    Article  CAS  Google Scholar 

  • Valentine, L.David. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81: 271–282.

    Google Scholar 

  • Viollier, E., P.W. Inglett, K. Hunter, A.N. Roychoudhury, and P. Van Cappellen. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry 15: 785–790.

    Article  CAS  Google Scholar 

  • Walling, Q.H., and P.N. Owens. 1996. Interpreting the 137Cs profiles observed in several small lakes and reservois in southern England. Chemical Geology 129: 115–131.

    Article  Google Scholar 

  • Wang, G., J. Spivack, S. Rutherford, U. Monor, and S. D’Hondt. 2008. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochimica et Cosmochimica Acta 72: 3479–3488.

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Community’s Seventh Framework Programme (FP/2007-2013) under grant agreement 217246 of the ERANET BONUS project BALTIC GAS (BMBF 03F0488D to TF), the Max Planck Society, and the Stockholm University, and a Ph.D. scholarship from the Vietnam Ministry of Education and Training (MOET) and the German Academic Exchange Service (DAAD) to N. M. Thang. We would like to thank these institutions for their financial support. We thank the crew and staff at the Äsko Laboratory and Kirsten Imhoff, Andrea Schipper, and Gabriele Schüßler for assistance in the laboratory. The comments of Dr. M. Holmer, Dr. S. Henkel, and one anonymous reviewer were very constructive and highly appreciated. N.M. Thang especially thanks Laura M. Wehrmann for many interesting discussions and for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Manh Thang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thang, N.M., Brüchert, V., Formolo, M. et al. The Impact of Sediment and Carbon Fluxes on the Biogeochemistry of Methane and Sulfur in Littoral Baltic Sea Sediments (Himmerfjärden, Sweden). Estuaries and Coasts 36, 98–115 (2013). https://doi.org/10.1007/s12237-012-9557-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9557-0

Keywords

Navigation