Skip to main content

Advertisement

Log in

Phytoplankton Functional Groups in a Tropical Estuary: Hydrological Control and Nutrient Limitation

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Hydrology and nutrients have been indicated as the main driving factors acting on phytoplankton biomass and composition in estuarine systems, although grazing may occasionally have some influence. In order to identify these factors over temporal and spatial scales, we analyzed physical, chemical, and biological properties of a tropical river-dominated estuary during the dry and rainy seasons. As far as we know, this is the first time that the functional groups approach has been used to analyze the changes in phytoplankton composition in an estuary. This recent framework is based on the tolerances and sensitivities in relation to environmental conditions of groups of species, which are labeled by alpha-numeric codes (Reynolds et al., J. Pl. Res. 24:417–428, 2002). In the estuary of Paraíba do Sul River, all phytoplankton groups were represented by freshwater organisms, indicating the strong influence of the river. However, remarkable shifts in composition and biomass occurred from the low to high flushing seasons, due much more to the river discharge than to nutrient availability. The overall results showed no nitrogen, phosphorus, or silica limitation to phytoplankton growth (mean values: dissolved inorganic nitrogen = 30.5 µM, soluble reactive phosphorus = 1.45 µM, and silica = 208.05 µM). The higher river flow supports a lower phytoplankton biomass composed mainly of nanoplankton (<20 µm) fast-growing functional groups, which are able to maintain biomass even in high flushing conditions (X1), or large heavy organisms, such as some heavy diatoms of group P, which are able to be in suspension in shallow and turbulent systems. The lower river flow led to the coexistence of large organisms (>20 µm) of the groups P and F, which include slow-growing populations typically found in mesotrophic lakes. Although the functional group approach was originally developed for temperate lakes, our data support this approach for a tropical estuarine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alpine, A.E., and J.E. Cloern. 1992. Trophic interactions and direct effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography 37(5): 946–955.

    Article  Google Scholar 

  • Alves-de-Souza, C., M.T. Gonzalez, and J.L. Iriarte. 2008. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal Plankton Research 30(11): 1233–1243. doi:10.1093/plankt/fbn079.

    Article  CAS  Google Scholar 

  • Anderson, D.M., and K. Rengefors. 2006. Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: The importance of life cycle events. Limnology and Oceanography 51: 860–873.

    Google Scholar 

  • Badylak, S., and E.J. Phlips. 2004. Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida. USA. Journal of Plankton Research 26(10): 1229–1247. doi:10.1093/plankt/fbh114.

    Article  CAS  Google Scholar 

  • Becker, V., V.L.M. Huszar, L. Naselli-Flores, and J. Padisák. 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology 53: 952–963. doi:10.1111/j.1365–2427.2008.01957.x.

    Article  Google Scholar 

  • Bernardes, L.C.M. 1952. Tipos de clima do sudeste brasileiro. Revista Brasileira de Geografia 14(1): 57–80.

    Google Scholar 

  • Bonilla, S., D. Conde, L. Aubriot, and M.D. Perez. 2005. Influence of hydrology on phytoplankton species composition and life strategies in a subtropical coastal lagoon periodically connected with the Atlantic Ocean. Estuaries 28: 884–895. doi:10.1007/BF02696017.

    Article  Google Scholar 

  • Boyer, J.P., R.R. Christian, and D.W. Stanley 1993. Patterns phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Marine Ecology Progress Series 97: 287–297.

    Google Scholar 

  • Bricker, S.B., C.G. Clement, D.E. Pirhalla, S.P. Orlando and D.R.G. Farrow. 1999. National Estuarine Eutrophication Assessment. Effect of nutrient enrichment in the nation’s estuaries, NOAA—NOS Special Projects Office 71 p.

  • Bricker, S.B., J.G. Ferreira, and T. Simas. 2003. An integrated methodology for assessment of estuarine trophic status. Ecological Modelling 169: 39–60. doi:10.1016/S0304-3800(03)00199-6.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 1984. Temporal dynamics and ecological significance of salinity stratification in an estuary (South San Francisco Bay, U.S.A). Oceanologica Acta 7: 137–141.

    Google Scholar 

  • Cloern, J.E. 1987. Turbity as a control on biomass and productivity in estuaries. Continental and Shelf Science 7: 1367–1381. doi:10.1016/0278-4343(87)90042-2.

    Article  Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystem: A review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34(2): 127–168. doi:10.1029/96RG00986.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253. doi:10.3354/meps210223.

    Article  CAS  Google Scholar 

  • Cole, J.J., B.L. Peirls, N.F. Caraco, and M.L. Pace. 1993. Nitrogen loading of rivers as a human driven process. In Human as components of ecosystems: The ecology of subtle human effects and populated areas, eds. M.L. Macdowell, and S.T.A. Pickett, 41–157. New York, USA: Springer.

    Google Scholar 

  • Conley, D.J., H. Kaas, F. Mohlenberg, B. Rasmussen, and J. Winodlf. 2000. Characteristics of Danish estuaries. Estuaries 23(6): 820–837. doi:10.2307/1353000.

    Article  CAS  Google Scholar 

  • de Madariaga I., L. Gonzales-Azpiri, F. Villate, and E. Orive 1992. Plankton responses to hydrological changes induced by freshets in a shallow mesotidal estuary. Estuarine, Coastal and Shelf Science 35:425–434.

    Google Scholar 

  • Downing, J.A.M., R.T. Mcclain, J.M. Melack, J. Elser, N.N. Rabalais, W.M. Lewis Jr., R.E. Turner, J. Corredor, D. Soto, A. Yanez-Arancibia, J.A. Kopaska, and R.W. Howarth. 1999. The Impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: Current conditions and projected changes. Biogeochemistry 46: 109–148.

    Google Scholar 

  • Edler, L. 1979. Recommendations for marine biological studies in the Baltic Sea: Phytoplankton and chlorophyll. Working Group 9, Baltic Marine Biologists (eds.).

  • Edmondson, W.T. 1995. Eutrophication. Encyclopedia of environmental biology, vol. 1, 697–703. New York: Academic.

  • Ferreira, J.G., W.J. Wolff, T.C. Simas, and S.B. Bricker. 2005. Does biodiversity of estuarine phytoplankton depend on hydrology? Ecological Modelling 187: 513–523. doi:10.1016/j.ecolmodel.2005.03.013.

    Article  Google Scholar 

  • Figueredo, C.C., and A. Giani. 2001. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445: 165–174. doi:10.1023/A:1017513731393.

    Article  Google Scholar 

  • Fincham, A.A. 1987. Biología marina básica. Barcelona, Spain: Omega.

    Google Scholar 

  • Findlay, S., M.L. Pace, and D. Fischer. 1996. Spatial and temporal variability in the lower food web of the tidal freshwater Hudson River. Dedicated Issue: The Hudson River Estuary. Estuaries 19(4): 866–873. doi:10.2307/1352303.

    Article  Google Scholar 

  • Fujita, C.C & C. Odebrecht. 2007. Short term variability of chlorophyll a and phytoplankton composition in a shallow area of the Patos Lagoon estuary (Southern brazil). Atlântica, Rio Grande, 29(2): 93–106.

    Google Scholar 

  • Gameiro, C., P. Cartaxana, and V. Brotas. 2007. Environmental drivers of phytoplankton distribution and composition in Tagus estuary, Portugal. Estuarine, Coastal and Shelf Science 75: 21–34. doi:10.1016/j.ecss.2007.05.014.

    Article  Google Scholar 

  • Gran, G. 1952. Determination of equivalent point in potentiometric titration. Analyst 77: 661–671. doi:10.1039/an9527700661.

    Article  CAS  Google Scholar 

  • Grasshoff, K.A., M. Ehrhardt, and K. Kremling. 1983. Methods of seawater analises. In Grasshoff K., M. Ehrhardt and K. Kremling (eds) 2nd edition. Weinheim: Verlag Chemie.

  • Håkanson, L. 1994. A review of effect-dose-sensitivity models for aquatic ecosystem. Internationale Revue der Gesamelten Hidrobiologie 79: 621–667. doi:10.1002/iroh.19940790412.

    Article  Google Scholar 

  • Happey-Wood, C.M. 1988. Ecology of freshwater planktonic green algae. In: C.D. Sandgren (Ed.), Growth and reproductive strategies of freshwater phytoplankton, Cambridge University Press. 5: 175–226.

  • Henry, P.D. 2003. Ecótonos nas interfaces dos ecossistemas aquáticos. In Raoul Henry (org.), 1st edition. São Carlos/São Paulo: Rima Editora.

  • van den Hoek, C., D.G. Mann, and H.M. Jahns. 1997. An introduction to phycology. Cambridge, USA: Cambridge University Press.

    Google Scholar 

  • Howarth, R.W. 1998. An assessment of human influences on inputs of nitrogen to the estuaries and continental shelves of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems 52: 213–223. doi:10.1023/A:1009784210657.

    Article  Google Scholar 

  • Hubble, D., and D. Harper. 2002. Phytoplankton community structure and succession in the water column of a shallow tropical. lake (Lake Naivasha, Kenya). Hydrobiologia 488: 89–98.

    Article  Google Scholar 

  • Huszar, V.L.M., and N. Caraco. 1998. The relationship between phytoplankton composition and physical-chemical variables: A comparison of taxonomic and morphological approaches in six temperate lakes. Freshwater Biology 40: 1–18. doi:10.1046/j.1365-2427.1998.00346.x.

    Article  Google Scholar 

  • Huszar, V.L.M., L.H.S. Silva, M.M. Marinho, P. Domingos, and C. Sant’anna. 2000. Cyanoprokaryote assemblages in eight productive tropical brazilian waters. Hydrobiologia 424: 67–77. doi:10.1023/A:1003996710416.

    Article  CAS  Google Scholar 

  • Irigoien, X., and J. Castel. 1997. Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France). Estuarine, Coastal and Shelf Science 44: 507–517. doi:10.1006/ecss.1996.0132.

    Article  CAS  Google Scholar 

  • Jassby, A. 2008. Phytoplankton in the upper san francisco estuary: Recent biomass trends, their causes and their trophic significance. San Francisco Estuary and Watershed Science 6(1): 24.

    Google Scholar 

  • Kimmerer, W.J. 2002. Effects of freshwater flow on abundance of estuarine organism: Physical effects or trophic linkages? Marine Ecology Progress Series 243: 39–55. doi:10.3354/meps243039.

    Article  Google Scholar 

  • Knoppers, B.A., P.P.R. Medeiros, M.E. Carneiro, and W.F.S. Landim. 2004. Dam impacts upon the biogeochemistry of tropical estuaries of east Brazil: The São Francisco and Paraíba do Sul Rivers. 4th Symposium International Environmental In Tropical Countries, 25th Ocotober 2004, Búzios, Brazil.

  • Kobayashi, T., B.G. Sanderson, and G.N. Gordon. 2005. A phytoplankton community in a temperate reservoir in New South Wales, Australia: Relationship between similarities and diversity indices and measures of hydrological disturbances. Marine and Freshwater Research 56: 203–214. doi:10.1071/MF04249.

    Article  Google Scholar 

  • Kruk, C., N. Mazzeo, G. Lacerot, and C.S. Reynolds. 2002. Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24(9): 901–912. doi:10.1093/plankt/24.9.901.

    Article  Google Scholar 

  • Lana, P.C., E. Marone, R.M. Lopes, and E.C. Machado. 2001. The subtropical estuarine complex of Paranaguá Bay, Brazil. In Ecological studies. Coastal marine ecosystem of Latin America 144 (10), eds. U. Seeliger, L.D. de Lacerda, and B. Kjerve, 131–145. New York, USA: Springer.

    Google Scholar 

  • Legendre, P., and L. Legendre. 1998. Numerical ecology, second English edition. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Lehman, P.W. 1992. Environmental factors associated with long-term changes in chlorophyll concentration in the Sacramento–San Joaquim Delta and Suisun Bay, California. Estuaries 15(3): 335–348. doi:10.2307/1352781.

    Article  CAS  Google Scholar 

  • Lehman, P.W. 2007. The influence of phytoplankton community composition on primary productivity along the riverine to freshwater tidal continuum in the San Joaquin River, California. Estuaries and Coasts 30(1): 82–93.

    Google Scholar 

  • Lund, J.W.G., C. Kipling, and E.D. Lecren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11:143–170.

    Google Scholar 

  • McCune, M., and M.J. Mefford. 1999. Multivariate analysis and ecological data, version 4.1. Gleneden Beach, OR, USA: MjM software.

    Google Scholar 

  • Mallin, M.A., M.H. Posey, G.C. Shank, M.R. Mciver, S.H.E. Ensign, and T.D. Alphin. 1999. Hurricane effects on water quality and benthos in the Cape Fear watershed: Natural and anthropogenic impacts. Ecological Aplications 9: 350–362. doi:10.1890/1051-0761(1999)009[0350:HEOWQA]2.0.CO;2.

    Article  Google Scholar 

  • Mann, K.H. 1982. Ecology of coastal waters. Studies in ecology. Berkeley, USA: University of California Press.

    Google Scholar 

  • Marinho, M.M., and V.L.M. Huszar. 2002. Nitrogen availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical Reservoir (Southern Brazil). Archiv für Hydrobiologie 153: 443–468.

    Google Scholar 

  • Murrell, M.C., R.S. Stanley, E.M. Lores, G.T. DiDonato, L.M. Smith, and D.A. Flemer. 2002. Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, FL, USA. Bulletin of Marine Science 70: 155–167.

    Google Scholar 

  • Murrell, M.C., J.D. III Hagy, E.M. Lores, and R.M. Greene. 2007. Phytoplankton production and nutrient distributions in a subtropical estuary: Importance of freshwater flow. Estuaries and Coasts 30(3): 390–402.

    Article  Google Scholar 

  • Nabout, J.C., I.S. Nogueira, and L.G. Oliveira. 2005. Phytoplankton community of floodplain lakes of the Araguaia river, Brazil, in the rainy and dry seasons. Journal of Plankton Research 27(12): 1–13.

    Google Scholar 

  • Naselli-Flores, L., J. Padisák, and M. Albay. 2007. Shape and size in phytoplankton ecology: Do they matter? Hydrobiologia 578: 157–161. doi:10.1007/s10750-006-2815-z.

    Article  Google Scholar 

  • Nürnberg, G.K. 1996. Trophic state of clear and colored, soft- and hard-water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lakes and Reservoir Management 12: 432–447.

    Article  Google Scholar 

  • Nybakken, J.W. 1997. Estuaries and salt marshes. In Marine biology: An ecological approach, 304–337. New York, USA: Harper Collins.

  • Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes (3rd. edition). Oxford, U.S.A.: Pergamon.

    Google Scholar 

  • Pennock, J.E., and J.H. Sharp. 1994. Temporal alteration between light-and-nutrient-limitation of phytoplankton production in a coastal plain estuary. Marine Ecology Progress Series 111: 275–288. doi:10.3354/meps111275.

    Article  Google Scholar 

  • Pereira, L.A.M and M.A.R Rodrigues. 2005. Avaliação do estado trófico das águas nas albufeiras da região de Lisboa e Vale do Tejo 1999–2003. CCDR–LTV (ed.) Lisboa, Portugal. 44p.

  • Perillo, G.M.E., M.C. Piccolo, E. Parodi, and R.H. Freije, 2001. The Bahia Blanca estuary, Argentina. In Ecological studies. Coastal Marine Ecosystem of Latin America 144(14), eds. U. Seeliger and B. Kjerve, 205–217. New York, USA: Springer.

  • Putland, J.N., and R.L. Iverson. 2007. Phytoplankton biomass in a subtropical estuary: Distribution, size composition, and carbon: Chlorophyll ratios. Estuaries and Coasts 30(5): 878–885.

    CAS  Google Scholar 

  • Reaugh, M.L., M.R. Roman, and D.K. Stoecker. 2007. Changes in plankton community structure and function in response to variable freshwater flow in two tributaries of the Chesapeake Bay. Estuaries and Coasts 30(3): 403–417.

    Article  Google Scholar 

  • Reynolds, C.S. 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf/Luhe, Germany: Ecology Institute.

    Google Scholar 

  • Reynolds, C.S. 2006. The ecology of phytoplankton. 535. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reynolds, C.S., and A.E. Irish. 1997. Modelling phytoplankton dynamics in lakes and reservoirs: The problem of in-situ growth rates. Hydrobiologia 349: 5–17. doi:10.1023/A:1003020823129.

    Article  CAS  Google Scholar 

  • Reynolds, C.S., and J.W.G. Lund 1988. The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing (Grasmere, English Lake District). Freshwater Biology 19: 379–404.

    Article  Google Scholar 

  • Reynolds, C.S., J.P. Descy, and J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? In: Descy, J.P., Reynolds, C. S. & Padisák, J. (Eds) Phytoplankton in turbid environments: Rivers and shallow lakes. Kluwer Academic Publishers, Holanda, Hydrobiologia 289: 1–7.

  • Reynolds, C.S., V.L.M. Huszar, C. Kruk, L. Naselli-Flores, and S. Melo. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417–428. doi:10.1093/plankt/24.5.417.

    Article  Google Scholar 

  • Rodríguez, F., Y. Pazos, J.E. Maneiro, and M. Zapata. 2003. Temporal variations in phytoplankton assemblages and pigment composition at a fixed station of the Ría Pontevedra (Nw Spain). Estuarine, Coastal and Shelf Science 58: 499–515. doi:10.1016/S0272-7714(03)00130-6.

    Article  CAS  Google Scholar 

  • Round, F.E., R.M. Crawford, and D.G. Mann. 1990. The diatoms: Biology and morphology of the genera. UK: Cambridge University Press.

    Google Scholar 

  • Salas, H.J., and P. Martino. 2001. Metodologías Simplificadas para la Evaluación de Eutroficación en Lagos Cálidos Tropicales. 63. Perú: CEPIS. Lima.

    Google Scholar 

  • Salmaso, N., and J. Padisák. 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112. doi:10.1007/s10750-006-0437-0.

    Article  Google Scholar 

  • Sas, H. 1989. Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Richarz, St. Augustin, Germany: Academia Verlag.

    Google Scholar 

  • Seeliger, U. 2001. The Patos lagoon estuary, Brazil, p. 267–182. In Ecological studies. Coastal marine ecosystems of Latin America 144(12), eds. U. Seeliger and B. Kjerfve. New York, USA: Springer.

  • Shannon, C.E., and W. Weaver. 1963. The mathematical theory of communication. Urbana, IL, USA: University of Illinois Press.

    Google Scholar 

  • Silva, C.A., T.S. Train, and L. Rodrigues. 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia 537: 99–109. doi:10.1007/s10750-004-2552–0.

    Article  Google Scholar 

  • Sin, Y., and R.L. Wetzel. 2002. Ecosystem modeling analysis of size-structured phytoplankton dynamics in the York River estuary, Virginia (U.S.A). I. Development of a plankton ecosystem model with explicit feedback controls and hydrodinamics. Marine Ecology Progress Series 228: 75–90. doi:10.3354/meps228075.

    Article  CAS  Google Scholar 

  • Sin, Y., R.L. Wetzel, and I.C. Anderson. 1999. Spatial and temporal characteristics of nutrient and phytoplankton dynamic in the York River estuary, Virginia: Analyses of long-term data. Estuaries 22(2a): 260–275. doi:10.2307/1352982.

    Article  Google Scholar 

  • Sin, Y., R. Wetzel, B. Lee, and Y. Kang. 2006. Integrative ecosystem analyses of phytoplankton dynamics in the York River estuary (USA). Hydrobiologia 571(1): 93–108.

    Google Scholar 

  • Smayda, T.J. 1983. The phytoplankton of estuaries. In Estuaries and enclosed seas, ed. B.H. KetchumAmsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Smayda, T.J. 2002. Adaptive ecology, growth strategies, and the global bloom expansion of dinoflagellates. Journal of Oceanagraphy 58: 281–294. doi:10.1023/A:1015861725470.

    Article  Google Scholar 

  • Smayda, T.J., and C.S. Reynolds. 2001. Community assemblages in marine phytoplankton application of recent models to harmful dinoflagellates blooms. Journal of Plankton Research 23: 447–461. doi:10.1093/plankt/23.5.447.

    Article  Google Scholar 

  • Smayda, T.J., and C.S. Reynolds. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research 49: 95–106. doi:10.1016/S1385-1101(02)00219-8.

    Article  Google Scholar 

  • Smith, V.H. 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and. Oceanography 51: 377–384.

    Article  CAS  Google Scholar 

  • Soares, M.C.S., V.L.M. Huszar, and F. Roland. 2007. Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Research and Applications 23: 698–714. doi:10.1002/rra.987.

    Article  Google Scholar 

  • Sommer, U. 1988. Growth and survival strategies of planktonic diatoms. In Growth and reproductive strategies of freshwater phytoplankton, ed. C.D. SandgrenEngland: Cambridge University Press.

    Google Scholar 

  • Tilman, D., S.S. Kilham, & P. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics 13:349–372.

    Google Scholar 

  • Tundisi, J.G. and T. Matsumura-Tundisi, 2001. The lagoon region and estuary ecosystem of Cananéia, Brazil. In Ecological studies coastal marine ecosystem of Latin America 144 (9), eds. U. Seeliger and B. Kjerve, 119–130. New York, USA: Springer.

  • Uhelinger, V. 1964. Étude statistique des méthodes de dénobrement planctonique. Archive des Science 17(2): 121–123.

    Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkomnung der quantitativen Phytoplankton Metodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vollenweider, R., and J. Kerekes. 1982. Eutrophication of waters. monitoring, assessment and control. Paris: OECD.

    Google Scholar 

  • Weithof, G. 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675. doi:10.1046/j.1365-2427.2003.01116.x.

    Article  Google Scholar 

  • Yeager, C.L.J., L.W. Harding, and M.E. Mallonee. 2005. Phytoplankton production, biomass and community structure following a summer nutrient pulse in Chesapeake Bay. Aquatic Ecology 39: 135–149. doi:10.1007/s10452-004-4767-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marina Suzuki and the Laboratory of Environmental Science researchers (UENF, Rio de Janeiro, Brazil) who provided the field sampling and the nutrient analysis. We are grateful for the financial support from Capes and Janet W. Reid (JWR Associates) for revising the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L.S., Huszar, V.L.M. & Ovalle, A.R. Phytoplankton Functional Groups in a Tropical Estuary: Hydrological Control and Nutrient Limitation. Estuaries and Coasts 32, 508–521 (2009). https://doi.org/10.1007/s12237-009-9142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9142-3

Keywords

Navigation