Skip to main content

Advertisement

Log in

Seasonal Influence of the Needle Rush Juncus roemarianus on Saltmarsh Pore Water Geochemistry

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Previous studies have shown that saltmarsh macrophytes have a significant influence on sediment biogeochemistry, both through radial release of oxygen from roots and also via primary production and release of labile organic exudates from roots. To assess the seasonal influence of the needle rush, Juncus roemarianus, on saltmarsh sediment geochemistry, pore waters and sediments were collected from the upper 50 cm of two adjacent sites, one unvegetated and the other vegetated by Juncus roemarianus, in a Georgia saltmarsh during winter and summer. Pore waters collected at 1- to 2-cm intervals were analyzed for pH, alkalinity, dissolved phosphate, ammonium, Fe(II), Fe(III), Mn(II), sulfide, sulfate, and organic carbon. Sediments were collected at 5-cm intervals and analyzed for iron distribution in the solid phase using a two-step sequential extraction. The upper 50 cm of the sediment pore waters are mostly sulfidic during both winter and summer. The pore water and sediment geochemistry suggest organic matter degradation is coupled mostly to Fe(III) and sulfate reduction. In summer, there is greater accumulation of alkalinity, sulfide, ammonium, and phosphate in the pore waters and lower levels of ascorbate extractable Fe, which is presumed to be comprised primarily of readily reducible Fe(III) oxides, in the sediments, consistent with higher organic matter degradation rates in summer compared to winter. Lower pH, alkalinity, ammonium, and sulfide concentrations in sediments with Juncus, compared to nearby unvegetated sediments, is consistent with release of oxygen into the Juncus rhizosphere, especially during summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida, C. M. R., A. P. Mucha, and M. T. S. D. Vasconcelos. 2004. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environmental Science and Technology 38: 3112–3118.

    Article  CAS  Google Scholar 

  • Almeida, C. M. R., A. P. Mucha, and M. T. S. D. Vasconcelos. 2005. The role of a salt marsh plant on trace metal bioavailability in sediments: estimation by different chemical approaches. Environmental Science and Pollution Research 12: 271–277.

    Article  CAS  Google Scholar 

  • Bottcher, M. E. 1998. Manganese(II) partitioning during experimental precipitation of rhodochrosite-calcite solid solutions from aqueous solutions. Marine Chemistry 62: 287–297.

    Article  CAS  Google Scholar 

  • Brewer, J. S. 2003. Nitrogen addition does not reduce belowground competition in a salt marsh clonal plant community in Mississippi (USA). Plant Ecology 168: 93–106.

    Article  Google Scholar 

  • Carey, E., and M. Taillefert. 2005. The role of soluble Fe(III) in the cycling of iron and sulfur in coastal marine sediments. Limnology and Oceanography 50: 1129–1141.

    CAS  Google Scholar 

  • Connell, E. L., T. D. Colmer, and D. I. Walker. 1999. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance between the root tip and shoot illumination. Aquatic Botany 63: 219–228.

    Article  Google Scholar 

  • Craft, C. B., E. D. Seneca, and S. W. Broome. 1991. Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: calibration with dry combustino. Estuaries 14: 175–179.

    Article  CAS  Google Scholar 

  • Davison, W. 1993. Iron and manganese in lakes. Earth Science Reviews 34: 119–163.

    Article  CAS  Google Scholar 

  • Filippelli, G. M. 2002. The global phosphorous cycle. In Phosphates: Geochemical, Geobiological and Materials Importance, Kohn, M. J., J. Rakovan and J. M. Hughes, eds. In Reviews in Mineralogy and Geochemistry 48: 391–425. Washington, DC, USA: Mineralogical Society of America.

  • Fontenot, J., D. Boldor, and K. A. Rusch. 2006. Nitrogen removal from domestic wastewater using the marshland upwelling system. Ecological Engineering 27: 22–36.

    Article  Google Scholar 

  • Giblin, A. E., and R. W. Howarth. 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography 29: 47–63.

    CAS  Google Scholar 

  • Grasshoff, K. l., M. Ehrhardt and K. Kremlin, eds. 1982. Methods of Seawater Analysis. Germany: Verlag Chemie.

  • Greenberg, A. E., L. S. Clesceri and A. D. Eaton eds. 1992. Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association.

  • Gribsholt, B., and E. Kristensen. 2002. Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study. Marine Ecology Progress Series 241: 71–87.

    Article  Google Scholar 

  • Gribsholt, B., J. E. Kostka, and E. Kristensen. 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Marine Ecology Progress Series 259: 237–251.

    Article  CAS  Google Scholar 

  • Hansen, J. W., J. W. Udy, C. J. Perry, W. C. Dennison, and B. A. Lomstein. 2000. Effect of the seagrass Zostera capricorni on sediment microbial processes. Marine Ecology Progess Series 199: 83–96.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Hines, M. E., S. L. Knollmeyer, and J. B. Tugel. 1989. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnology and Oceanography 34: 578–590.

    CAS  Google Scholar 

  • Hines, M. E., R. S. Evans, B. R. S. Genthner, S. G. Willis, S. Friedman, J. N. Rooney-Varga, and R. Devereux. 1999. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Applied and Environmental Microbiology 65: 2209–2216.

    CAS  Google Scholar 

  • Holmer, M., B. Gribsholt, and E. Kristensen. 2002. Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and salt marsh sediments. Marine Ecology Progress Series 225: 197–204.

    Article  Google Scholar 

  • Howarth, R. W., and A. Giblin. 1983. Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnology and Oceanography 28: 70–82.

    CAS  Google Scholar 

  • Howes, B. L., and J. M. Teal. 1994. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance. Oecologia 97: 431–438.

    Article  Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal, and I. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnology and Oceanography 26: 350–360.

    Article  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, and G. M. King. 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnology and Oceanography 29: 1037–1051.

    CAS  Google Scholar 

  • Hsieh, Y. P., and C. H. Yang. 1997. Pyrite accumulation and sulfate depletion as affected by root distribution in a Juncus (needle rush) salt marsh. Estuaries 20: 640–645.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., R. Carignan, and A. Tessier. 1993. Measurement of trace metals associated with acid volatile sulfides and pyrite in organic freshwater sediments. Environmental Science and Technology 27: 2367–2372.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., A. Tessier, and R. Carignan. 1998. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Applied Geochemistry 13: 213–233.

    Article  CAS  Google Scholar 

  • Hyacinthe, C., S. Bonneville, and P. Van Cappellen. 2006. Reactive iron(III) in sediments: chemical versus microbial extractions. Geochimica et Cosmochimica Acta 70: 4166–4180.

    Article  CAS  Google Scholar 

  • Jahnke, R. A.. 1992. The phosphorus cycle. In Global Biogeochemical Cycles, eds. , R. J. Charlson, G. H. Orians, and G. V. Wolfe, 301–315. New York: Academic.

    Google Scholar 

  • Jensen, S. I., M. Kuhl, R. N. Glud, L. B. Jørgensen, and A. Prieme. 2005. Oxygen microzones and radial oxygen loss from roots of Zostera marina. Marine Ecology Progess Series 293: 49–58.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., C. M. Moore, K. L. Lowe, C. Meile, T. DiChristina, and P. Van Cappellen. 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry 64: 179–203.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., P. Van Cappellen, T. J. DiChristina, J. E. Kostka, K. L. Lowe, C. M. Moore, A. N. Roychoudhury, and E. Viollier. 2005. Salt marsh pore water geochemistry does not correlate with microbial community structure. Estuarine, Coastal and Shelf Science 62: 233–251.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., J. R. Haas, D. Miller, and N. T. Ndenga. 2006a. Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA). Geochemical Transactions 7: 11.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., J. R. Haas, N. T. Ndenga, and D. Miller. 2006b. Seasonal variations in vertical redox stratification and potential influence on trace metal speciation in minerotrophic peat sediments. Water Air and Soil Pollution 173: 373–403.

    Article  CAS  Google Scholar 

  • Kostka, J. E., and G. W. Luther. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta 58: 1701–1710.

    Article  CAS  Google Scholar 

  • Kostka, J. E., and G. W. Luther. 1995. Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry 29: 159–181.

    Article  CAS  Google Scholar 

  • Kostka, J. E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton, and E. Kristensen. 2002a. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnology and Oceanography 47: 230–240.

    CAS  Google Scholar 

  • Kostka, J. E., A. Roychoudhury, and P. Van Cappellen. 2002b. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60: 49–76.

    Article  CAS  Google Scholar 

  • LaForce, M. J., C. M. Hansel, and S. Fendorf. 2002. Seasonal transformations of manganese in a palustrine emergent wetland. Soil Science Society of America Journal 66: 1377–1389.

    Article  CAS  Google Scholar 

  • LaRocque, J. R., P. W. Bergholz, C. E. Bagwell, and C. R. Lovell. 2004. Influence of host plant-derived and abiotic environmental parameters on the composition of the diazotroph assemblage associated with roots of Juncus roemerianus. Antonie van Leeuwenhoek 86: 249–261.

    Article  Google Scholar 

  • Lee, R. W., D. W. Kraus, and J. E. Doeller. 1999. Oxidation of sulfide by Spartina alterniflora roots. Limnology and Oceanography 44: 1155–1159.

    Article  CAS  Google Scholar 

  • Luther, G. W., and T. M. Church. 1988. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Marine Chemistry 23: 295–309.

    Article  CAS  Google Scholar 

  • Luther, G. W., J. E. Kostka, T. M. Church, B. Sulzberger, and W. Stumm. 1992. Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Marine Chemistry 40: 81–103.

    Article  CAS  Google Scholar 

  • Maricle, B. C., and R. W. Lee. 2002. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquatic Botany 74: 109–120.

    Article  Google Scholar 

  • Mendelssohn, I. A., and M. T. Postek. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. American Journal of Botany 69: 904–912.

    Article  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee, and W. H. Patrick. 1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214: 439–441.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A., B. A. Kleiss, and J. W. Wakeley. 1995. Factors controlling the formation of oxidized root channels- a review. Wetlands 5: 37–46.

    Google Scholar 

  • Miley, G. A., and R. P. Kiene. 2004. Sulfate reduction and porewater chemistry in a Gulf Coast Juncus roemarianus (Needlerush) marsh. Estuaries 27: 472–481.

    Article  CAS  Google Scholar 

  • Morse, J. W., and G. W. Luther. 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63: 3373–3378.

    Article  CAS  Google Scholar 

  • Nielsen, L. B., K. Finster, D. T. Welsh, A. Donelly, R. A. Herbert, R. de Wit, and B. A. Lomstein. 2001. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes, and sediments from Zostera noltii and Spartina maritima meadows. Environmental Microbiology 3: 63–71.

    Article  CAS  Google Scholar 

  • Sarazin, G., G. Michard, and F. Prevot. 1999. A rapid and accurate spectroscopic method for alkalinity measurements in seawater samples. Water Research 1: 290–294.

    Article  Google Scholar 

  • Shotyk, W.. 1988. Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews 25: 95–176.

    Article  CAS  Google Scholar 

  • Stookey, L. L.. 1970. Ferrozine- a new spectrophotometric reagent. Analytical Chemistry 42: 779–781.

    Article  CAS  Google Scholar 

  • Sundby, B., C. Vale, I. Cacador, F. Catarino, M.-J. Madureira, and M. Caetano. 1998. Metal-rich concretions on the roots of salt marsh plants: mechanism and rate of formation. Limnology and Oceanography 43: 245–252.

    CAS  Google Scholar 

  • Sundby, B., C. Vale, M. Caetano, and G. W. Luther III. 2003. Redox chemistry in the root zone of a salt marsh sediment in the Tagus Estuary, Portugal. Aquatic Geochemistry 9: 257–271.

    Article  CAS  Google Scholar 

  • Sundby, B., M. Caetano, C. Vale, C. Gobeil, G. W. Luther, and D. B. Nuzzio. 2005. Root-induced cycling of lead in salt marsh sediments. Environmental Science and Technology 39: 2080–2086.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A.. 1974. A rapid method for determination of sulfate in water samples. Environmental Letters 7: 237–243.

    Article  CAS  Google Scholar 

  • Vale, C., F. M. Catarino, C. Cortesao, and M. I. Cacador. 1990. Presence of metal-rich rhizoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus Estuary, Portugal. The Science of the Total Environment 97/98: 617–626.

    Article  Google Scholar 

  • Van Cappellen, P., and Y. Wang. 1996. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science 296: 197–243.

    Article  Google Scholar 

  • Van der Lee, J., and L. De Windt. 2000. CHESS tutorial and cookbook. User’s Guide Nr. LHM/RD/99/05. Fontainebleau, France: CIG-Ecole des Mines de Paris.

    Google Scholar 

  • Weiss, J. V., D. Emerson, and J. P. Megonigal. 2005. Rhizosphere iron(III) deposition and reduction in a Juncus effusus L. Domina. Soil Science Society of America Journal 69: 1861–1870.

    Article  CAS  Google Scholar 

  • Yao, W., and F. J. Millero. 1996. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry 52: 1–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Western Michigan University Faculty Research and Activities Support Fund for providing funding for this study. We also thank the staff at the University of Georgia Marine Institute, especially Jon Garbisch, for their help with housing, laboratory space and other logistics. This study benefited from additional support from the National Science Foundation CAREER program (NSF-EAR 0348435). Laboratory and field assistance from Keith Boneburg, Johnson Haas, Nancy Morgan, Tracy Lund, Jessica Schoonhoven, and Amy Nowakowski is greatly appreciated. Insightful and thorough reviews from two anonymous reviewers are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla M. Koretsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koretsky, C.M., Miller, D. Seasonal Influence of the Needle Rush Juncus roemarianus on Saltmarsh Pore Water Geochemistry. Estuaries and Coasts: J CERF 31, 70–84 (2008). https://doi.org/10.1007/s12237-007-9000-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-007-9000-0

Keywords

Navigation