Skip to main content
Log in

Effects of Chitting Duration on Early Maturation of Potatoes in a Short Season Environment

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the efficacy of pre-plant light-sprouting (chitting) on hastening the maturation of potato. Four cultivars with different maturities (‘Superior’, ‘Haryeong’, ‘Seohong’, and ‘Jayoung’) were used over three different growing seasons from 2016 to 2018. Different degrees of physiological age were obtained by exposing the seed lots of each cultivar to sprout-inducing conditions (13–15 °C temperature and 40–50% relative humidity (RH) in 11–20 μmol m−2 s−1 of diffuse light), for 0, 2–4, 6–7, and 10–11 weeks before planting. As the sprout-inducing periods increased, seeds physiologically aged, as evidenced by the increase in the percent sprouted eyes and sprout length per tuber, and the resulting stem numbers per plant. Moreover, in a longer the chitting duration, the increase in the number of stems was highly correlated with the tendency to have more tubers per plant. Physiologically aged seed significantly hastened plant growth through the decreased number of days to emergence, tuberization, and canopy development for all cultivars regardless of the growing season. The accelerated growth of shoots and tubers resulted in an increase in the harvest index, yield, and specific gravity of tubers, with no effect on second growth. However, there were practically no consistent benefits in the early-maturing cultivar Superior. That made it possible for the crop, especially medium- and late-maturing cultivars, to be harvested earlier in the short growing season environment. The magnitude of light-sprouting-induced effects depended on the chitting duration regimes, the maturities of cultivars, and the growing season environments.

Resumen

Los objetivos de este estudio fueron medir la influencia del período de brotación en pre-siembra sobre la edad fisiológica de la semilla y en la maduración temprana del tallo y el tubérculo en la papa. Se usaron cuatro variedades de diferente madurez (‘Superior’, ‘Haryeong’, ‘Seohong’, y ‘Jayoung’) en tres diferentes ciclos de cultivo del 2016 al 2018. Se obtuvieron diferentes grados de edad fisiológica mediante la exposición de los lotes de semilla de cada variedad a condiciones de inducción de brotación (13–15 °C de temperatura y 40–50% de humedad relativa (RH), en luz difusa de 600–1100 lx), por 0, 2–4, 6–7, y 10–11 semanas antes de la siembra. A medida que se incrementaron los períodos de inducción del brote, las semillas envejecieron fisiológicamente, como se evidenció por el aumento en el porcentaje de ojos brotados y de longitud del brote por tubérculo, y el número de tallos resultantes por planta. Más aún, a medida que era mayor el período de brotación, el aumento en el número de tallos estuvo altamente correlacionado con la tendencia a tener más tubérculos por planta. La semilla fisiológicamente envejecida apresuró significativamente el crecimiento de la planta mediante la disminución del número de días a la emergencia, tuberización, y desarrollo del follaje para todas las variedades, independientemente del ciclo de cultivo. El crecimiento acelerado de tallos y tubérculos resultó en un aumento en el índice de cosecha, rendimiento y gravedad específica de los tubérculos, sin efecto en crecimiento secundario. No obstante, no hubo beneficios consistentes prácticos en la variedad precoz. Eso hizo posible para el cultivo, especialmente en las variedades intermedias y tardías, su cosecha más temprano en el ambiente de ciclo corto de crecimiento. La magnitud de los efectos del período de inducción de la brotación dependió de los regímenes de los períodos de brotación, de la madurez de las variedades y de los ambientes de los ciclos de cultivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen, E.J., and P.J. O’Brien. 1986. The practical significance of accumulated day-degrees as a measure of physiological age of seed potato tubers. Field Crops Research 14: 141–151.

    Article  Google Scholar 

  • Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013a. Evidence that tuber respiration is the pacemaker of physiological aging in seed potatoes (Solanum tuberosum L.). J. Plant Growth Regulation 32: 708–720.

    Article  CAS  Google Scholar 

  • Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013b. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research 90: 470–496.

    Article  Google Scholar 

  • Caldiz, D.O. 2009. Physiological age research during the second half of the twentieth century. Potato Research 52: 295–304.

    Article  Google Scholar 

  • Caldiz, D.O., G. Brocchi, J. Alaniz, and C. Marchan. 1996. Effects of the physiological age of seed potatoes on tuber initiation and starch and dry matter accumulation. Pesq Agropec Bras 31: 853–858.

    Google Scholar 

  • Caldiz, D.O., L.V. Fernández, and P.C. Struik. 2001. Physiological age index: A new, simple and reliable index to assess the physiological age of seed potato tubers based on haulm killing date and length of the incubation period. Field Crops Research 69: 69–79.

    Article  Google Scholar 

  • Chang, D.C. 2013. Development of techniques for high quality and sustainable potato production (in Korean), 158–189. National Institute of Crop Science: Annual Research Report IV.

    Google Scholar 

  • Chang, D.C., O.S. Hur, C.S. Park, and S.Y. Kim. 2011. Field performance, yield components and nitrogen utilization efficiency of potato plants grown from hydroponic small tubers. Horticulture, Environment, and Biotechnology 52: 369–375.

    Article  Google Scholar 

  • Chang, D.C., H.B. Sohn, J.H. Cho, J.S. Im, Y.I. Jin, G.R. Do, S.J. Kim, H.M. Cho, and Y.B. Lee. 2014. Freezing and frost damage of potato plants: A case study on growth recovery, yield response, and quality changes. Potato Research 57: 99–110.

    Article  CAS  Google Scholar 

  • Chang, D.C., J.H. Cho, Y.I. Jin, J.S. Im, C.G. Cheon, S.J. Kim, and H.S. Yu. 2016. Mulch and planting depth influence potato canopy development, underground morphology, and tuber yield. Field Crops Research 197: 117–124.

    Article  Google Scholar 

  • Chang, D.C., Y.I. Jin, J.W. Nam, C.G. Cheon, J.H. Cho, S.J. Kim, and H.S. Yu. 2018. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Research 215: 156–162.

    Article  Google Scholar 

  • Chishiki, T., N. Nishiyama, N. Matsubara, and K. Komura. 1979. On the new potato varieties, Dejima, Setoyutaka and Nishiyutaka. Bull Nagasaki Pref Agri Fore Exp Stn 7: 41–76.

    Google Scholar 

  • Cho, H.M., J.H. Cho, K.S. Kim, Y.E. Park, D.M. Park, Y.D. Cho, H.W. Suh, J.Y. Yi, S.Y. Kim, Y.I. Hahm, K.Y. Shin, and J.O. Lee. 2001. An early maturing, round, double cropping potato variety for fresh market, “Chubaek”. Korean Journal of Breeding Science 33: 344–345.

    Google Scholar 

  • Dean, C.J., L.O. Knowles, and N.R. Knowles. 2018. Effect of seed aging and gibberellin treatments for manipulating apical dominance, tuber set and size distribution of cv. Shepody. American Journal of Potato Research 95: 526–538.

    Article  CAS  Google Scholar 

  • Delaplace, P., Y. Brostaux, M.L. Fauconnier, and P. Jardin. 2008. Potato (Solanum tuberosum L.) tuber physiological age index is a valid reference frame in postharvest ageing studies. Postharvest Biol Technol 50: 103–106.

    Article  Google Scholar 

  • Gould, W.A. 1999. Potato production, processing, and technology. CTI publications, 61. MD: Inc. Timonium.

    Book  Google Scholar 

  • Harris, P.M. 1982. Water. In The potato crop: The scientific basis for improvement, ed. P.M. Harris, 244–277. London: Chapman & Hall.

    Google Scholar 

  • Hay, R.K.M., and J. Hampson. 1991. Sprout and stem development from potato tubers of differing physiological age: Role of apical dominance. Field Crops Research 27: 1–16.

    Article  Google Scholar 

  • Ittersum, M.R., K. Scholte, and L.J.P. Kupers. 1990. A method to assess cultivar differences in rate of physiological ageing of seed tubers. American Potato Journal 67: 603–613.

    Article  Google Scholar 

  • Kim, K.S., H.J. Kim, H.Y. Kim, J.K. Kim, Y.I. Hahm, and B.H. Hahn. 1990. Jopung: A new early-maturing, disease-resistant and high-yielding variety (in Korean). RDA Journal of Horticultural Science 32: 50–54.

    Google Scholar 

  • KMA. 2016–2018. http://weather.go.kr/weather/climate/past_table.jsp.

  • Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern- and southern-grown potato seed lots. Crop Science 46: 284–296.

    Article  Google Scholar 

  • Mosley, A.R., and R.W. Chase. 1993. Selecting cultivars and obtaining healthy seed lots. In Potato health management, ed. R.C. Rowe, 19–25. Minnesota: APS Press.

    Google Scholar 

  • Nepal, S., C.S. McIntosh, M.K. Thornton, N. Olsen, P. Nolte, and P.E. Patterson. 2016. Manipulating of physiological seed age of russet Burbank and ranger russet potatoes – Economic evaluation. American Journal of Potato Research 93: 590–601.

    Article  Google Scholar 

  • Park, C.S., J.C. Jeong, S.Y. Kim, K.Y. Shin, and S.Y. Son. 1998a. Growth and yield as influenced by storage temperatures of seed tuber in ‘Dejima’ and ‘superior’ potatoes (in Korean). RDA Journal of Horticultural Science 40: 109–114.

    Google Scholar 

  • Park, C.S., S.Y. Kim, J.C. Jeong, K.Y. Shin, and S.Y. Son. 1998b. The effect of light pre-sprouting duration on subsequent growth and yield in ‘Dejima’ and ‘superior’ potatoes (in Korean). RDA Journal of Horticultural Science 40: 115–119.

    Google Scholar 

  • Park, Y.E., J.H. Cho, H.M. Cho, K.Y. Ryu, J.Y. Yi, H.W. Suh, Y.K. An, H.K. Lim, H.S. Kim, and S.J. Choi. 2006. A new potato cultivar, “Haryeong” with resistance to late blight and good culinary taste of steamed potato. Korean Journal of Breeding Science 38: 213–214.

    Google Scholar 

  • Park, Y.E., J.H. Cho, H.M. Cho, J.Y. Yi, H.W. Suh, Y.G. Lee, Y.K. Ahn, H.K. Lim, H.S. Kim, and S.J. Choi. 2007. A new red skinned potato cultivar “Seohong” with resistance to common scab and high yield. Korean Journal of Breeding Science 39: 341–342.

    Google Scholar 

  • Park, Y.E., J.H. Cho, H.M. Cho, J.Y. Yi, H.W. Suh, and M.G. Chung. 2009. A new potato cultivar “Jayoung”, with high concentration of anthocyanin (in Korean). Korean Journal of Breeding Science 41: 51–55.

    Article  Google Scholar 

  • Pavek, M.J., and R.E. Thornton. 2009. Planting depth influences potato plant morphology and economic value. American Journal of Potato Research 86: 56–67.

    Article  Google Scholar 

  • Reust, W. 1986. EAPR working group physiological age of the potato. Potato Research 29: 268–271.

    Article  Google Scholar 

  • Rieman, G.H. 1962. Superior. A new white, medium-maturing, scab-resistant potato variety with high chipping quality. American Potato Journal 39: 19–28.

    Article  Google Scholar 

  • Stevenson, W.R., R. Loria, G.D. Franc, and D.P. Weingartner. 2001. Compendium of potato diseases. second ed, 83. St. Paul, Minnesota: The American Phytopathological Society.

  • Struik, P.C. 2007. The canon of potato science: 40. Physiological age of seed tubers. Potato Research 50: 375–377.

    Article  Google Scholar 

  • Struik, P.C. 2009. Importance of the physiological age of seed potatoes. Plantekongres 2009. 1. Production of seed potatoes in the Netherlands, pp. 212–213.

  • Struik, P.C., and S.G. Wiersema. 1999. Seed potato technology, 383. Wageningen, The Netherlands: Wageningen Pers.

    Book  Google Scholar 

  • Struik, P.C., P.E.L. van der Putten, D.O. Caldiz, and K. Scholte. 2006. Response of stored potato tubers from contrasting cultivars to accumulated day-degrees. Crop Science 46: 1156–1168.

    Article  Google Scholar 

  • Webb, R.E., D.R. Wilson, J.R. Shumaker, B. Graves, M.R. Henninger, J. Watts, J.A. Frank, and H.J. Murphy. 1978. Atlantic: A new potato variety with high solids, good processing quality, and resistance to pests. American Potato Journal 55: 141–145.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the “Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ01195204)”, Rural Development Administration, Republic of Korea. The authors would like to thank Hyun Sook Shim and Seok Ja Kim (research assistant) for their dedicated work and assistance in the data collection of the experiments at HARI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chil Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, D.C., Cho, J.H., Cheon, C.G. et al. Effects of Chitting Duration on Early Maturation of Potatoes in a Short Season Environment. Am. J. Potato Res. 97, 43–53 (2020). https://doi.org/10.1007/s12230-019-09747-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-019-09747-2

Keywords

Navigation