Skip to main content
Log in

High Levels of Heterozygosity Found for 15 SSR Loci in Solanum chacoense

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Wild species-related germplasm is widely used to introduce new alleles and/or increase heterozygosity in cultivated species. Twenty-four SSR markers, specifically designed for cultivated potatoes, were evaluated to determine the extent of genetic variation within and among ten accessions of Solanum chacoense (chc). Fifteen of these markers were informative: there was no polymorphism in one of the markers, four of the markers showed evidence that more than one locus was being amplified, and the other four markers failed to consistently amplify products. Heterozygosity in these 10 accessions ranged from 33% to 87%. Variation among accessions was the largest proportion of variance for three markers, variation among genotypes within accessions was the largest proportion for three markers, and for the other nine markers variation within genotypes (chromosome to chromosome) was the largest proportion. Genetic similarity averaged 29.5% across markers. Where accessions have already been screened and found to possess the trait of interest, multiple genotypes from those accessions should be evaluated to identify genotypes with the greatest expression of the trait.

Resumen

El germoplasma relacionado a especies silvestres se usa ampliamente para introducir nuevos alelos y/o aumentar la heterozigocidad en especies cultivadas. Se evaluaron 24 marcadores SSR específicamente diseñados para papas cultivadas, para determinar la amplitud de la variación genética dentro y entre diez introducciones de Solanum chacoense (chc). Quince de estos marcadores fueron informativos: no hubo polimorfismo en uno de los marcadores, cuatro de ellos mostraron evidencia de que más de un locus estaba siendo amplificado, y los otros cuatro marcadores fallaron para amplificar consistentemente los productos. La eterozigocidad en estas diez introducciones varió de 33% a 87%. La variación entre las accesiones fue la proporción mas grande de varianza para tres marcadores, la variación entre genotipos dentro de las introducciones fue la de mayor proporción para tres marcadores, y para los otros nueve la variación dentro de genotipos (cromosoma a cromosoma) fue la proporción más grande. La similitud genética promedió 29.5% entre los marcadores. En donde las accesiones ya han sido analizadas y que se encontró que poseen el carácter de interés, múltiples genotipos de estas introducciones deberían evaluarse para identificar genotipos con la mayor expansión del carácter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bains, P.S., V.A. Bisht, D.R. Lynch, L.M. Kawchuk, and J.P. Helgeson. 1999. Identification of stem soft rot (Erwinia carotovora subspecies atroseptica) resistance in potato. American Journal of Potato Research 76: 137–141.

    Article  Google Scholar 

  • Bamberg, J.B., and A. del Rio. 2004. Genetic heterogeneity estimated by RAPD polymorphism of four tuber-bearing potato species differing by breeding system. American Journal of Potato Research 81: 377–383.

    Article  CAS  Google Scholar 

  • Bamberg, J., and A. del Rio. 2014. Selection and validation of an AFLP marker core collection for the wild potato Solanum microdontum. American Journal of Potato Research 91: 368–375.

    Article  CAS  Google Scholar 

  • Bamberg, J., and A. del Rio. 2016. Accumulation of genetic diversity in the US potato genebank. American Journal of Potato Research 93: 430–435.

    Article  CAS  Google Scholar 

  • Bamberg, J.B., C.A. Longtine, and E.B. Radcliffe. 1996. Fine screening Solanum (potato) germplasm accessions for resistance to Colorado potato beetle. American Potato Journal 73: 211–223.

    Article  Google Scholar 

  • Bamberg, J.B., A. del Rio, J. Coombs, and D. Douches. 2015. Assessing SNPs versus RAPDs for predicting heterogeneity and screening efficiency in wild potato (Solanum) species. American Journal of Potato Research 92: 276–283.

    Article  CAS  Google Scholar 

  • Bamberg, J., A. del Rio, D. Kinder, L. Louderback, B. Pavlik, and C. Fernandez. 2016a. Core collections of potato (Solanum) species native to the USA. American Journal of Potato Research 93: 564-571.

  • Bamberg, J.B., A. del Rio, and D.A. Navarre. 2016b. Intuitive visual impressions (cogs) for identifying clusters of diversity within potato species. American Journal of Potato Research 93: 350–359.

    Article  Google Scholar 

  • Bani-Ameur, F., F.I. Lauer, R.E. Veilleux, and A. Hilali. 1991. Genetic composition of 4x-2x potato hybrids – influence of Solanum chacoense. Genome 34: 413–420.

    Article  Google Scholar 

  • Bilski, J.J., D.C. Nelson, and R.L. Conlon. 1988. Response of six wild species to chloride and sulfate salinity. American Potato Journal 65: 605–612.

    Article  Google Scholar 

  • Bonierbale, M.W., R.L. Plaisted, and S.D. Tanksley. 1993. A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theoretical and Applied Genetics 86: 481–491.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A.H.D. 1989. Core collections: a practical approach to genetic resources management. Genome 31: 818–824.

    Article  Google Scholar 

  • Brown, C.R., and P.E. Thomas. 1994. Resistance to potato leafroll virus derived from Solanum chacoense – characterization and inheritance. Euphytica 74: 51–57.

    Article  Google Scholar 

  • Buso, J.A., L.S. Boiteux, and S.J. Peloquin. 1999a. Multitrait selection system using populations with a small number of interploid (4x-2x) hybrid seedlings in potato: Degree of high-parent heterosis for yield and frequency of clones combining quantitative agronomic traits. Theoretical and Applied Genetics 99: 81–91.

    Article  Google Scholar 

  • Buso, J.A., F.J.B. Reifschneider, L.S. Boiteux, and S.J. Peloquin. 1999b. Effects of 2n-pollen formation by first meiotic division restitution with and without crossover on eight quantitative traits in 4x-2x potato progenies. Theoretical and Applied Genetics 98: 1311–1319.

    Article  Google Scholar 

  • Buso, J.A., L.S. Boiteux, and S.J. Peloquin. 2000. Heterotic effects for yield and tuber solids and type of gene action for five traits in 4x potato families derived from interploid (4x-2x) crosses. Plant Breeding 119: 111–117.

    Article  Google Scholar 

  • Buso, J.A., L.S. Boiteux, and S.J. Peloquin. 2003. Tuber yield and quality of 4x-2x (FDR) potato progenies derived from the wild diploid species Solanum berthaultii and Solanum tarijense. Plant Breeding 122: 229–232.

    Article  Google Scholar 

  • Chase, S.S. 1963. Analytic breeding in Solanum tuberosum L. – a scheme utilizing parthenotes and other diploid stocks. Canadian Journal of Genetics and Cytology 5: 359–363.

    Article  Google Scholar 

  • Christensen, C.T., L. Zotarelli, K.G. Haynes, and J. Colee. 2017. Rooting characteristics of Solanum chacoense and Solanum tuberosum in vitro. American Journal of Potato Research. https://doi.org/10.1007/s12230-017-9597-x.

  • Cipriani, G., G. Lot, W.G. Huang, M.T. Marrazzo, E. Peterlunger, and R. Testolin. 1999. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: Isolation, characterization and cross-species amplification in Prunus. Theoretical and Applied Genetics 99: 65–72.

    Article  CAS  Google Scholar 

  • De Jong, H., G.C.C. Tai, W.A. Russell, G.R. Johnston, and K.G. Proudfoot. 1981. Yield potential and genotype-environment interactions of tetraploid-diploid (4x-2x) potato hybrids. American Journal of Potato Research 58: 191–199.

    Article  Google Scholar 

  • De Vito, M., N. Greco, D. Carputo, and L. Frusciante. 2003. Response of wild and cultivated clones to Italian populations of root knot nematodes Meloidogyne spp. Nematropica 33: 65–72.

    Google Scholar 

  • del Rio, A.H., and J.B. Bamberg. 2002. Lack of association between genetic and geographic origin characteristics for the wild potato Solanum sucrense Hawkes. American Journal of Potato Research 79: 335–338.

    Article  Google Scholar 

  • Dray, S., and A.B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software. https://doi.org/10.18637/jss.v022.i04.

  • Ekanayake, I.J., and J.P. DeJong. 1992. Stomatal response of some cultivated and wild tuber-bearing potatoes in warm tropics as influenced by water deficits. Annals of Botany 70: 53–60.

    Article  Google Scholar 

  • Endelman, J.B., and S.H. Jansky. 2016. Genetic mapping with an inbred line-derived F2 population in potato. Theoretical and Applied Genetics 129: 935–943.

    Article  CAS  PubMed  Google Scholar 

  • Errebhi, M., C.J. Rosen, F.L. Lauer, M.W. Martin, J.B. Bamberg, and D.E. Birong. 1998. Screening of exotic potato germplasm for nitrogen uptake and biomass production. American Journal of Potato Research 75: 93–100.

    Article  Google Scholar 

  • Excoffier, L., P.E. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haploypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feingold, S., J. Lloyd, N. Norero, M. Bonierbale, and J. Lorenzen. 2005. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theoretical and Applied Genetics 111: 456–466.

    Article  CAS  PubMed  Google Scholar 

  • Ghislain, M., D. Andrade, F. Rodriguez, R.J. Hijmans, and D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics 113: 1515–1527.

    Article  CAS  PubMed  Google Scholar 

  • Ghislain, M., J. Núñez, M.R. Herrera, J. Pignataro, F. Guzman, M. Bonierbale, and D.M. Spooner. 2009. Robust and highly informative microsatellite-based genetic identity kit for potato. Molecular Breeding 23: 377–388.

    Article  CAS  Google Scholar 

  • Guo, W.Z., W. Wang, B.L. Zhou, and T.Z. Zhang. 2006. Cross-species transferability of G-arboreum-derived EST-SSRs in the diploid species of Gossypium. Theoretical and Applied Genetics 112: 1573–1581.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, J.P., C.N. Hansey, B.R. Whitty, K. Stoffel, A.N. Massa, A. van Deynze, W.S. De Jong, D.S. Douches, and C.R. Buell. 2011. Single nucleotide polymorphism discovery in elite North American potato germplasm. Bio Med Central Genomics 12: 302.

    CAS  Google Scholar 

  • Hardigan, M.A., J. Bamberg, C.R. Buell, and D.S. Douches. 2015. Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. The Plant Genome 8: 1–16.

    Article  Google Scholar 

  • Hawkes, J.G. 1978. Genetic poverty of the potato in Europe. In Broadening the genetic base of crops, ed. A.C. Zeven and A.M. van Harten. Pudoc: Wageningen.

    Google Scholar 

  • Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A. van Deynze, W. De Jong, R.W. Veilleux, S. Jansky, P. Bethke, D.S. Douches, and C.R. Buell. 2013. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. Genes, Genomes, Genetics 3: 1003–1013.

    Google Scholar 

  • Hosaka, K., and R.E. Hanneman Jr. 1991. Seed protein variation with accessions of wild and cultivated potato species and inbred Solanum chacoense. Potato Research 34: 419–428.

    Article  Google Scholar 

  • Huaman, Z., R. Ortiz, and R. Gomez. 2000. Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. American Journal of Potato Research 77: 183–190.

    Article  Google Scholar 

  • Jansky, S.H., R. Simon, and D.M. Spooner. 2006. A test of taxonomic predictivity: Resistance to white mold in wild relatives of cultivated potato. Crop Science 46: 2561–2570.

    Article  Google Scholar 

  • Jansky, S.H., J. Dawson, and D.M. Spooner. 2015. How do we address the disconnect between genetic and morphological diversity in germplasm collections? American Journal of Botany 102: 1213–1215.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, G.J.W., A. vanNorel, B. VerkerBakker, and R. Janssen. 1996. Resistance to Meloidogyne chitwoodi, M-fallax and M-hapla in wild tuber-bearing Solanum spp. Euphytica 92: 287–294.

    Article  Google Scholar 

  • Jensen, L.B., P.B. Holm, and T. Lubberstedt. 2007. Cross-species amplification of 105 Lolium perenne SSR loci in 23 species within the Poaceae. Molecular Ecology Notes 7: 1151–1161.

    Article  Google Scholar 

  • Kamvar, Z.N., J.F. Tabima, and N.J. Grünwald. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 4 (2): e281. https://doi.org/10.7717/peerj.281.

    Article  Google Scholar 

  • Kolliker, R., E.S. Jones, M.C. Drayton, M.P. Dupal, and J.W. Forster. 2001. Development and characterisation of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theoretical and Applied Genetics 102: 416–424.

    Article  CAS  Google Scholar 

  • Lee, G. A., S. J. Kwon, Y. J. Park, M. C. Lee, H. H. Kim, J. S. Lee, S. Y. Lee, J. G Gwag, C. K. Kin, and K. H. Ma. 2011. Cross-amplification of SSR markers developed from Allium sativum to other Allium species. Scientia Horticulturae 128:401–407.

  • Lopes, M.S., G. Maciel, D. Mendonca, F.S. Gil, and A.D.C. Machado. 2006. Isolation and characterization of simple sequence repeat loci in Rubus hochstetterorum and their use in other species from the Rosaceae family. Molecular Ecology Notes 6: 750–752.

    Article  CAS  Google Scholar 

  • Love, S.L. 1999. Founding clones, major contributing ancestors, and exotic progenitors of prominent North American potato cultivars. American Journal of Potato Research 76: 263–272.

    Article  Google Scholar 

  • Lynch, D.R., M.L. Kawchuk, J. Hachey, P.S. Bains, and R.J. Howard. 1997. Identification of a gene conferring high levels of resistance to Verticillium wilt in Solanum chacoense. Plant Disease 81: 1011–1014.

    Article  Google Scholar 

  • Mc Gregor, C.E., C.A. Lambert, M. Greyling, J.H. Louw, and L. Warnich. 2000. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphtica 113: 135–144.

    Article  CAS  Google Scholar 

  • McKay, J., and R.G. Latta. 2002. Adaptive population divergence: Markers, QTL and traits. Trends in Ecology and Evolution 17: 285–291.

    Article  Google Scholar 

  • Mendoza, H.A., and F.L. Haynes. 1974. Genetic relationship among potato cultivars grown in the United States. Hort Science 9: 328–330.

    Google Scholar 

  • Micheletto, S., R. Boland, and M. Huarte. 2000. Argentinian wild diploid Solanum species as sources of quantitative late blight resistance. Theoretical and Applied Genetics 101: 902–906.

    Article  Google Scholar 

  • Milbourne, D., R. Meyer, J.E. Bradshaw, E. Baird, N. Bonar, J. Provan, W. Powell, and R. Waugh. 1997. Comparison of PCR based marker systems for the analysis of genetic relationships in cultivated potato. Molecular Breeding 3: 127–136.

    Article  CAS  Google Scholar 

  • Moisan-Thiery, M., S. Marhadour, M.C. Kerlan, N. Dessenne, M. Perramant, T. Gokelaere, and Y. Le Hingrat. 2005. Potato cultivar identification using simple sequence repeats markers (SSR). Potato Research 48: 191–200.

    Article  Google Scholar 

  • Nagy, I., A. Stagel, Z. Sasvari, M. Roder, and M. Ganal. 2007. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annum L.). Genome 50: 668–688.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, S., and G.R. Rout. 2005. Isolation and characterization of micro satellites in Bambusa arundinacea and cross species amplification in other bamboos. African Journal of Biotechnology 4: 151–156.

    CAS  Google Scholar 

  • Peakall, R., S. Gilmore, W. Keys, M. Morgante, and A. Rafalski. 1998. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Molecular and Biological Evolution 15: 1275–1287.

    Article  CAS  Google Scholar 

  • Ran, Y., and C. Dai. 1996. Heterosis and genetic analysis of yield and tuber characters of 4x hybrids from 2x-2x, 4x-2x and 2x-4x crosses in potato. Acta Agronomica Sinica 22: 745-749.

  • Raveendar, S., G.A. Lee, Y.A. Jeon, Y.J. Lee, J.R. Lee, G.T. Cho, J.H. Cho, J.H. Park, K.H. Park, K.H. Ma, and J.W. Chung. 2015. Cross-amplification of Vicia sativa subsp sativa microsatellites across 22 other Vicia species. Molecules 20: 1543–1550.

    Article  PubMed  Google Scholar 

  • Reed, D.H., and R. Frankham. 2001. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55: 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, M.P., and E.E. Ewing. 1989. Heat tolerance in tuber bearing Solanum species – a protocol for screening. American Potato Journal 66: 63–74.

    Article  Google Scholar 

  • Rios, D., M. Ghislain, F. Rodriguez, and D.M. Spooner. 2007. What is the origin of the European potato? Evidence from Canary Island landraces. Crop Science 47: 1271–1280.

    Article  CAS  Google Scholar 

  • Rodriguez, D.A., G.A. Secor, N.C. Gudmestad, and K. Grafton. 1995. Screening tuber-bearing Solanum species for resistance to Helminthosporium solani. American Potato Journal 72: 669–679.

    Article  Google Scholar 

  • Salim, A.P., S. Mohankumar, and Y. Perumal. 2011. Cross species microsatellite marker amplification in Solanum lycopersicon Mill. International Journal of Tropical Agriculture 29: 139–143.

    Google Scholar 

  • Sanford, J.C., and R.E. Hanneman. 1982. A possible heterotic threshold in the potato and its implications for breeding. Theoretical and Applied Genetics 61: 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Sanford, L.L., S.P. Kowalski, K.L. Deahl, and S.L. Sinden. 1997. Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. American Potato Journal 74: 15–21.

    Article  CAS  Google Scholar 

  • Spooner, D.M., J. Núñez, G. Trujillo, M. del Rosario Herrera, F. Guzmán, and M. Ghislain. 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Sciences in the United States of America 104: 19398–19403.

    Article  CAS  Google Scholar 

  • Spooner, D.M., S.H. Jansky, and R. Simon. 2009. Tests of taxonomic and biogeographic predictiviety: resistance to disease and insect pests in wild relatives of cultivated potato. Crop Science 49: 1367–1376.

    Article  Google Scholar 

  • Tai, G.C.C., and H. De Jong. 1997. A comparison of performance of tetraploid progenies produced by diploid and their vegetatively doubled (tetraploid) counterpart parents. Theoretical and Applied Genetics 94: 303–308.

    Article  Google Scholar 

  • Tarn, T.R., G.C.C. Tai, H. DeJong, A.M. Murphy, and J.E.A. Seabrook. 1992. Breeding potatoes for long-day, temperate climates. Plant Breeding Reviews 9: 217–332.

    Google Scholar 

  • van Treuren, R., A. Magda, R. Hoekstra, and T.J.L. van Hintum. 2004. Genetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection. Genetic Resources and Crop Evolution 51: 277–290.

    Article  Google Scholar 

  • Veilleux, R.E., and F.I. Lauer. 1981. Breeding behavior of yield components and hollow heart in tetraploid-diploid vs conventionally derived potato hybrids. Euphytica 30: 547–561.

    Article  Google Scholar 

  • Zaki, H.E.M., K.G. Haynes, and B.T. Vinyard. 2016. In vitro screening of Solanum chacoense for salinity tolerance. American Journal of Potato Research 93: 149.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. Benildo de los Reyes and James Olmstead for their insights and advice on the project. We also thank Dr. John Bamberg and Max Martin at the Potato Gene Bank for experimental material. Thanks, too, to Dr. Bamberg for his many helpful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen G. Haynes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haynes, K.G., Zaki, H.E.M., Christensen, C.T. et al. High Levels of Heterozygosity Found for 15 SSR Loci in Solanum chacoense . Am. J. Potato Res. 94, 638–646 (2017). https://doi.org/10.1007/s12230-017-9602-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-017-9602-4

Keywords

Navigation