Skip to main content

Advertisement

Log in

Influence of Foliar-Applied Growth Retardants on Russet Burbank Potato Tuber Production

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The potato cv Russet Burbank grows poorly in the semi-arid climate of the High Plains, primarily due to its tendency to produce misshaped tubers. Since gibberellic acid (GA3) is associated with stem elongation and may be involved in tuber shape, the objective of this study was to determine whether GA3 biosynthesis inhibitors could improve tuber shape. Prohexadione-Ca and chlormequat-Cl are two well-known such inhibitors. They were applied to ‘Russet Burbank’ at 0, 70, 280, 1,120, 4,480 g/ha when the largest tubers were 20, 60 and 100 g/tuber from 2001 to 2003. Neither compound affected tuber shape. Yields increased 17–20 % by prohexadione-Ca at 280 g/ha and 9–33 % by chlormequat-Cl at 4,480 g/ha. In 2004, prohexadione-Ca at 280 g/ha was applied when the largest tubers were 3, 25, 100, 180, and 370 g to determine a tuber stage response. Yield increased 14 % when applied at 25 and 100 g/tuber growth stages, but the number of misshaped tubers increased from 48 % to 75 %. These two inhibitors did not overcome tuber misshaping and should not be used for that purpose.

Resumen

La variedad de papa Russet Burbank crece pobremente en el clima semi-árido de los altiplanos, primeramente debido a su tendencia a producir tubérculos deformados. Considerando que el ácido giberelico (GA3) está asociado con alargamiento del tallo y pudiera estar involucrado en la forma del tubérculo, el objetivo de este estudio fue determinar si los inhibidores de biosíntesis de GA3 pudieran mejorar la forma del tubérculo. Prohexadiona-Ca y clormequat-Cl son dos de tales inhibidores que son bien conocidos. Se aplicaron a Russet Burbank a 0, 70, 280, 1,120 y 4,480 g/ha cuando los tubérculos más grandes eran de 20, 60, y 100 g/tubérculo, de 2001 a 2003. Ningún compuesto afectó la forma del tubérculo. Los rendimientos incrementaron 17–20 % por prohexadiona-Ca a 280 g/ha y 9–33 % por clormequat a 4,480 g/ha. En 2004, prohexadiona-Ca a 280 g/ha se aplicó cuando los tubérculos más grandes eran de 3, 25, 100, 180 y 370 g, para determinar la respuesta en función de la etapa del tubérculo. El rendimiento aumentó 14 % cuando se aplicó cuando la etapa de crecimiento del tubérculo era de 25 y 100 g/tubérculo, pero el número de tubérculos deformados aumentó de 48 a 75 %. Estos dos inhibidores no contrarrestaron la deformación de tubérculo y no deberían de usarse para ese propósito.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdala, G., M. Guinazu, R. Tizio, D.W. Porter, and R.P. Pharis. 1995. Effect of 2-chloroethyltrimethyl ammonium chloride on tuberization and endogenous GA3 in roots of potato cuttings. Plant Growth Regulation 17: 95–100.

    Article  CAS  Google Scholar 

  • Balamani, V., and B.W. Poovaiah. 1985. Retardation of shoot growth and promotion of tuber growth of potato plants by paclobutrazol. American Potato Journal 62: 363–369.

    Article  CAS  Google Scholar 

  • Bamberg, J.B., and R.E. Hanneman Jr. 1993. Transmission and yield effects of a gibberellin mutant allele in potato. Potato Research 36: 365–372.

    Article  Google Scholar 

  • Bodlaender, K.B.A., and S. Algra. 1966. Influence of the growth retardant B 995 on growth and yield of potatoes. European Potato Journal 9: 242–258.

    Article  CAS  Google Scholar 

  • Brown, R.G.S., H. Kawaide, Y.-Y. Yang, W. Rademacher, and Y. Kamiya. 1997. Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. Physiologia Plantarum 101: 309–313.

    Article  CAS  Google Scholar 

  • Busov, V.B., A.M. Brunner, and S.H. Strauss. 2008. Genes for control of plant stature and form. New Phytologist 177: 589–607.

    Article  PubMed  CAS  Google Scholar 

  • Changnon, S.A., P. Lamb, and K.G. Hubbard. 1990. Regional climate centers: new institutions for climate services and climate-impact research. Bulletin of the American Meteorological Society 71: 527–537.

    Article  Google Scholar 

  • Choudhri, R.S., P.K.R. Choudhri, and P.A. Veeraghavan. 1976. Response of potato crop to treatment with ascorbic acid and Cycocel. Indian Journal of Plant Physiology 19: 15–19.

    CAS  Google Scholar 

  • Dekhuijzen, H.M., and K.B.A. Bodlaender. 1973. Distribution and persistence of chlormequat in potato plants. Pesticide Science 4: 619–627.

    Article  CAS  Google Scholar 

  • Espindula, M.C., V.S. Rocha, J.A.S. Grossi, M.A. Souza, L.T. Souza, and L.F. Favarato. 2009. Use of growth retardants in wheat. Planta Daninha, Vicosa-MG 27: 379–387.

    Article  Google Scholar 

  • Gunasena, H.P.M., and P.M. Harris. 1969. the effect of CCC and nitrogen on the growth and yield of the second early potato variety Craig’s Royal. Journal of Agricultural Science Cambridge 73: 245–259.

    Article  CAS  Google Scholar 

  • Humphries, E.C., and P.W. Dyson. 1967. Effect of a growth inhibitor, N-dimethylaminosuccinamic acid (B9), on potato plants in the field. European Potato Journal 10: 116–126.

    Article  CAS  Google Scholar 

  • Koda, Y., and Y. Okazawa. 1983. Characteristic changes in the levels of endogenous plant hormones in relation to the onset of potato tuberization. Japanese Journal of Crop Science 52: 592–597.

    Article  Google Scholar 

  • Lovell, P.H., and A. Booth. 1967. Effects of gibberellic acid on growth, tuber formation and carbohydrate distribution in Solanum tuberosum. New Phytologist 66: 525–537.

    Article  CAS  Google Scholar 

  • MacLeod, D.J., and J.L. Howatt. 1958. The effect of gibberellin compounds on the shape of potato tubers. American Potato Journal 35: 596–597.

    Article  CAS  Google Scholar 

  • Menzel, C.M. 1980. Tuberization in potato at high temperatures: responses to gibberellin and growth inhibitors. Annals of Botany 46: 259–265.

    CAS  Google Scholar 

  • Myhre, D.L., and A.H. Eddins. 1957. Results of treating potato seed pieces and plants with gibberellic acid. Florida State Horticultural Soc. p. 166.

  • Pavlista, A.D. 1995. Potato production stages: Scheduling key practices. Univ. Nebraska Extension Cir. #1249. Potato Education Guide. http://cropwatch.unl.edu/web/potato/key_production_stages

  • Pavlista, A.D. 1997. Potato types & characteristics: laboratory exercises. The American Biology Teacher 59: 30–34.

    Article  Google Scholar 

  • Rademacher, W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Physiology and Plant Molecular Biology 51: 501–531.

    Article  PubMed  CAS  Google Scholar 

  • Radwan, A.A., M.M. El-Fouly, and N.A. Garas. 1971. Retarding stem elongation and stimulating dry matter production and yield of potato with chlormequat chloride (CCC). Potato Research 14: 173–180.

    Article  CAS  Google Scholar 

  • Rayirath, U.P., R.R. Lada, C.D. Caldwell, S.K. Asiedu, K.J. Sibley, and A.A. Adams. 2009. CCC and prohexadione-Ca enhance rhizome growth and lateral bud production in rhubarb (Rheum rhabarbarum L.). Journal of Plant Growth Regulation 28: 137–146.

    Article  CAS  Google Scholar 

  • SAS Institute. 2003. SAS System for Windows. Release 9.1. ed. Cary: SAS Institute Inc.

    Google Scholar 

  • Sharma, N., N. Kaur, and A.K. Gupta. 1998. Effects of gibberellic acid and chlorocholine chloride on tuberization and growth of potato (Solanum tuberosum L.). Journal of the Science of Food and Agriculture 78: 466–470.

    Article  CAS  Google Scholar 

  • Tekalign, T., and P.S. Hammes. 2005. Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regulation 45: 37–46.

    Article  CAS  Google Scholar 

  • Thomas, S.G., and T.P. Sun. 2004. Update on gibberellin signaling. A tale of the tall and the short. Plant Physiology 135: 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Van Dam, J., P.L. Kooman, and P.C. Struik. 1996. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Research 39: 51–62.

    Article  Google Scholar 

  • Vega, S.E., J.B. Bamberg, and J.P. Palta. 2006. Gibberellin-deficient dwarfs in potato vary in exogenous GA3 response when the ga 1 allele is in different genetic backgrounds. American Journal of Potato Research 83: 357–363.

    Article  CAS  Google Scholar 

  • Vreugdenhil, D., and L.I. Sergeeva. 1999. Gibberellins and tuberization in potato. Potato Research 42: 471–481.

    Article  CAS  Google Scholar 

  • Wang, H., H. Li, F. Liu, and L. Xiao. 2009. Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Science Horticulture 119: 113–116.

    Article  CAS  Google Scholar 

  • Wang, H., L. Xiao, J. Tong, and F. Liu. 2010. Foliar application of chlorocholine chloride improves leaf mineral nutrition, antioxidant enzyme activity, and tuber yield of potato (Solanum tuberosum L.). Science Horticulture 125: 521–523.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Carl Gall for his technical assistance and to especially thank the Nebraska Potato Development Commission for the financial support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Pavlista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlista, A.D. Influence of Foliar-Applied Growth Retardants on Russet Burbank Potato Tuber Production. Am. J. Potato Res. 90, 395–401 (2013). https://doi.org/10.1007/s12230-013-9307-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-013-9307-2

Keywords

Navigation