Skip to main content
Log in

Guttation: Mechanism, Momentum and Modulation

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Guttation is one of several visible physiological events of plant kingdom. The mechanism of this phenomenon is however, obscure and embedded deep into mysteries despite its vital significance for the plants and people. In this paper attempts have been made, in the light of recent discoveries, and new and novel findings, to review the past and present works reflecting on an integrated view of the mechanism of this phenomenon and its regulation. In this context, the gene transfer technology and other modern developments in instrumentation and experimentation have enabled to a large extent the understanding of the mechanism of plant secretion of liquid having solutes, both organic and inorganic, dissolved in it. In all probability, this process seems to originate primarily on account of root pressure that involves osmotic withdrawal and transport of water from growth medium and subsequently activities of living cells of xylem parenchyma at the expense of energy fuelled by ATP leading to energetically uphill co-transport of water and solutes in xylem vessels building hydrostatic pressure in the roots pushing the saps upward (Wegner in Journal of Experimental Botany 65:381–393, 2014; Singh 2016). This process though genetically governed, appears to be triggered and regulated by the interaction of several internal, external and edaphic factors finely-tuned by chemico-mechanosensors such as pH gradient, hormones, mechanical loading, turgor potential, membrane potential, temperature, light, touch, sound etc. influencing cellular contractile proteins and gating of aquaporins. The positive hydrostatic pressure so developed is, in turn, transmitted via stem to the leaves as release of water droplets of guttation through permanently open hydathodes located at the tips, margins, adaxial and abaxial surfaces of uninjured leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  • Abutalybov, V. F., V. I. Shushanashvili & V. N. Zholkevich. 1980. Isolation of actin-like protein from sunflower roots. Doklady Akademii Nauk SSSR 252: 1023–1024.

    CAS  Google Scholar 

  • ——— & V. N. Zholkevich. 1979. Isolation of actomyosin-like protein from sunflower roots. Doklady Akademii Nauk SSSR 244: 1275–1277.

    CAS  Google Scholar 

  • Aki, T., M. Shigyo, R. Nakano, T. Yoneyama & S. Yanagisawaet. 2008. Nano-scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant and Cell Physiology 49: 767–790.

    Article  CAS  PubMed  Google Scholar 

  • Aloni, R. 2001. Foliar and axial aspects of vascular differentiation: hypotheses and evidence. Journal of Plant Growth Regulation 20: 22–34.

    Article  CAS  Google Scholar 

  • ———, M. Langhans, E. Aloni, E. Dreieicher & C. I. Ullrich. 2005. Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. Journal of Experimental Botany 56: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • ———, K. Schwalm, M. Langhans & C. I. Ullrich. 2003. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216: 841–853.

    CAS  PubMed  Google Scholar 

  • Arango, M., F. Gevaudant, M. Oufattole & M. Boutry. 2003. The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216: 355–365.

    CAS  PubMed  Google Scholar 

  • Arnold, A. 1952. Uber den funktionsmechanismus der endodermiszellen der wurzeln. Protoplasma 41: 180–211.

    Article  Google Scholar 

  • Azad, A. K., Y. Sawa, T. Ishikawa & H. Shibata. 2009. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis. Applied and Environmental Microbiology 75: 2792–2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, X.-F., J.-J. Zhu, P. Zhang, Y.-H. Wang, L.-Q. Yang & L. Zhang. 2007. Na + and water uptake in relation to radial reflection coefficient of root in arrowleaf saltbush under salt stress. Journal of Integrative Plant Biology 49: 1334–1340.

    Article  CAS  Google Scholar 

  • Bald, J. G. 1952. Stomatal droplets and the penetration of leaves by plant pathogens. American Journal of Botany 39: 97–99.

    Article  Google Scholar 

  • Baluska, F. 2010. Recent surprising similarities between plant cells and neurons. Plant Signaling & Behavior 5: 87–89.

    Article  CAS  Google Scholar 

  • ———, J. Samaj, P. Wojtazek, D. Volkmann & D. Menzel. 2003. Cytoskeleton–plasma membrane–cell wall continuum in plants. Emerging links revisited. Plant Physiology 133: 483–491.

    Article  CAS  Google Scholar 

  • ——— & S. Mancuso. 2009. Signalling in plants. Berlin, Springer.

    Google Scholar 

  • ——— & D. Volkmann. 2008. Plant myosins: do they have roles in gravi- and mechanosensing? Pp 161–172. In: Y. B. Blume, V. Baird, A. I. Yemets, & D. Breviario (eds). The plant cytoskeleton: a key tool for agro-biotechnology. Springer, Berlin.

    Google Scholar 

  • ———, ——— & S. Mancuso. 2006. Communication in plants: neuronal aspects of plant life. Springer, Berlin.

    Book  Google Scholar 

  • Baskin, T. I., F. Baluska, P. Benfey, M. Bennett, et al. 2010. Shootward and rootward: peak terminology for plant polarity. Trends in Plant Science 15: 593–594.

    Article  CAS  PubMed  Google Scholar 

  • Barrs, H. D. 1966. Root pressure and leaf water potential. Science 152: 1266–1268.

    Article  CAS  PubMed  Google Scholar 

  • Barzana, G., R. Aroca, J. A. Paz, F. Chaumont, M. C. Martinez-Ballesta, M. Carvajal & J. M. Ruiz-Lozano. 2012. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany 109: 1009–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert, G., M. D. Biernert, T. Jahn, M. Boutry & F. Chaumont. 2011. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant Journal 66: 306–317.

    Article  CAS  PubMed  Google Scholar 

  • Biles, C. L. & F. B. Abeles. 1991. Xylem sap proteins. Plant Physiology 96: 597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose, J. C. 1923. The physiology of the ascent of sap. Longmans Green & Co., London.

    Google Scholar 

  • Boyer, J. S. 1985. Water transport. Annual Review of Plant Physiology 36: 473–516.

    Article  Google Scholar 

  • Brodribb, T. J. & N. M. Holbrook. 2006. Declining hydrolic efficiency as transpiring leaves desiccate: two types of response. Plant, Cell & Environment 29: 2205–2215.

    Article  CAS  Google Scholar 

  • Broyer, T. C. 1951. Exudation studies on the water relations of plants. American Journal of Botany 38(157–1): 62.

    Google Scholar 

  • Bugbee, B., Koerner, G. 2002. Yield comparisons and unique characteristics of the dwarf wheat cultivar ‘USU-Apogee’ research: super dwarf cultivar studies: ‘APOGEE’ wheat. http://www.usu.edu/cpl/research_dwarf_wheat.htm [Verified November 2011]

  • Burkle, L., A. Cedzich, C. Dopke, H. Stransky, S. Okumoto, C. Kuhn & W. B. Frommer. 2003. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant Journal 34: 13–26.

  • Canny, M. J. 1995. A new theory for the ascent of sap— cohesion supported by tissue pressure. Annals of Botany 75: 343–357.

    Article  Google Scholar 

  • ——— 1997. Vessel contents during transpiration— embolisms and refilling. American Journal of Botany 84: 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  • ——— 1998. Applications of the compensating pressure theory of water transport. American Journal of Botany 85: 897–909.

    Article  CAS  PubMed  Google Scholar 

  • ——— 2001. Contributions to the debate on water transport. American Journal of Botany 88: 43–46.

    Article  PubMed  Google Scholar 

  • Cao, K. F., S. J. Yang, Y. J. Zhang & T. J. Brodribb. 2012. The maximum height of grasses is determined by roots. Ecology Letters 15: 666–67210.

    Article  PubMed  Google Scholar 

  • Carlton, W. M., E. J. Braun & M. L. Gleason. 1998. Ingress of Clavibacter michiganensis subsp. Michiganensis into tomato leaves through hydathodes. Phytopathology 88: 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-C. & Y.-R. Chen. 2005. Study on laminar hydathodes of Ficus formosana (Moraceae). I. Morphology and ultrastructure. Botanical Bulletin of Academia Sinica 46: 205–215.

    Google Scholar 

  • ——— & ———. 2006. Study on laminar hydathodes of Ficus formosana (Moraceae). II. Morphogenesis of hydathodes. Botanical Studies 47: 279–292.

    Google Scholar 

  • ——— & ———. 2007. Study on laminar hydathodes of Ficus formosana (Moraceae). III. Salt injury of guttation on hydathodes. Botanical Studies 48: 215–226.

    Google Scholar 

  • Cochard, H., J. S. Venisse, T. S. Barigah, N. Brunel, S. Herbette, A. Guilliot, M. T. Tyree & S. Sakr. 2007. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology 143: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crafts, A. S. & T. C. Broyer. 1938. Migration of salts and water into xylem of the roots of higher plants. American Journal of Botany 25: 529–535.

    Article  CAS  Google Scholar 

  • Davis, T. A. 1961. High root pressure in palms. Nature 192: 227–228.

    Article  Google Scholar 

  • Dieffenbach, H., D. Kramer & U. Luttege. 1980a. Release of guttation fluid from passive hydathodes of intact barley plants. I. Structural and cytological aspects. Annals of Botany 45: 397–401.

    Google Scholar 

  • ———, U. Luttege & M. G. Pitman. 1980b. Release of guttation fluid from passive hydathodes of intact barley plants. II. The effects of abscisic acid and cytokinins. Annals of Botany 45: 703–712.

    CAS  Google Scholar 

  • Dixon, H. H. 1914. Transpiration and the ascent of sap. Macmillan, London.

    Google Scholar 

  • ——— & G. J. Dixon. 1931. The exudation of water from the leaf tips of Colocaesia antiquorum Schott. Scientific Proceedings of the Royal Dublin Society 20: 7–10.

    Google Scholar 

  • Dustmamatov, A. G., V. N. Zholkevish & V. V. Kuznetsov. 2004. Water pumping activity of the root system in the process of cross-adaptation of sunflower plants to hyperthermia and water deficiency. Russian Journal of Plant Physiology 51: 822–826.

    Article  CAS  Google Scholar 

  • Eaton, F. M. 1943. The osmotic and vitalistic interpretations of exudation. American Journal of Botany 30: 663–674.

    Article  CAS  Google Scholar 

  • Emberger, G. 2008. http://www.messiah.edu/oakes/fungi_on_wood/poroid%20fungi/species%20pages/Polyporus%20squamosus.htm. [Verified October 2011]

  • Engel, H. & U. I. Friederichsen. 1954. Periodische guttation bei Zea mays. Planta 44: 459–471.

    Article  Google Scholar 

  • Enns, L. C., M. E. McCully & M. J. Canny. 1998. Solute concentrations in xylem sap along vessels of maize primary roots at high root pressure. Journal of Experimental Botany 49: 1539–1544.

    Article  CAS  Google Scholar 

  • Eshel, M., Beeckman, T. (eds) 2013. Plant roots: the hidden half. Fourth Edition, CRC Press

  • Ewers, F. W., H. Cochard & M. T. Tyree. 1997. A survey of root pressures in vines of a tropical lowland forest. Oecologia 110: 191–196.

    Article  Google Scholar 

  • Feild, T. S. & N. C. Arens. 2007. The ecophysiology of early angiosperms. Plant, Cell and Environment 30: 291–309.

    Article  CAS  PubMed  Google Scholar 

  • ———, ——— & T. E. Dawson. 2003. The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Sciences 164: 129–142.

    Article  Google Scholar 

  • ———, T. L. Sage, C. Czerniak & W. J. D. Iles. 2005. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant, Cell & Environment 28: 1179–1190.

    Article  CAS  Google Scholar 

  • Fick, A. 1855. On liquid diffusion, Poggendorffs Annalen. 94, 59 (1855) - reprinted in Journal of Membrane Science 100:33–38 (1995).

  • Fischer, R. & S. Schillberg. 2004. Molecular farming: plant-made pharmaceuticals and technical proteins. Wiley, Hoboken, NJ.

    Book  Google Scholar 

  • Fisher, J. B., G. Angles, F. W. Ewers & J. Lopez-Portillo. 1997. Survey of root pressure in tropical vines and woody species. International Journal of Plant Sciences 158: 44–50.

    Article  Google Scholar 

  • French, C. J., M. Elder & F. Skelton. 1993. Recovering and identifying infectious plant viruses in guttation fluid. Horticultural Science 28: 746–747.

    Google Scholar 

  • Fletcher, A. T. & J. C. Mader. 2007. Hormone profiling by LC-QToF-MS/MS in dormant Macadamia integrifolia: correlations with abnormal vertical growth. Plant Growth and Regulation 26: 351–361.

    Article  CAS  Google Scholar 

  • Flood, M. G. 1919. Exudation of water by Colocasia antiqualum. Scientific Proceedings of the Royal Dublin Society 15: 502.

    Google Scholar 

  • Frey-Wyssling, A. 1941. Die guttation als aligemeine erscheinung. Berichte Der Schweizerischen Botanischen Gesellschaft 51: 321–325.

    Google Scholar 

  • Fujii, Y. & N. Tanaka. 1957. Intensity of guttation in rice seedlings in relation to earliness or lateness of the variety. Japanese Journal of Crop Science 25: 131–132.

    Article  Google Scholar 

  • Gareis, M. & E. Gareis. 2007. Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Journal of Mycopathologia 163: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Gasparikova, O., M. Ciamporova, I. Mistrík & F. Baluska. 2001. Recent advances of plant root structure and function. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Gaumann, E. 1938. Uber die experimentelle auslosung der guttation. Berichte der Deutschen Botanischen Gesellschaft 56: 396–405.

    Google Scholar 

  • Gaxiola, R. A., M. G. Palmgren & K. Schumacher. 2007. Plant proton pumps. FEBS Letters 581: 2204–2214.

    Article  CAS  PubMed  Google Scholar 

  • Gay, P. A. & S. Tuzun. 2000. Involvement of a novel peroxidase isozyme and lignification in hydathodes in resistance to black rot disease in cabbage. Canadian Journal of Botany 78: 1144–1149.

    Article  CAS  Google Scholar 

  • Ghosh, M. & S. P. Singh. 2005. A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research 3: 1–18.

    Article  Google Scholar 

  • Ginsburg, H. & B. Z. Ginzburg. 1970. Radial water and solute flows in roots of Zea mays L. 1. Water flows. Journal of Experimental Botany 21: 580–592.

    Article  CAS  Google Scholar 

  • ——— & ———. 1971. Evidence for active water transport in a corn preparations. Journal of Membrane Biology 4: 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Goatley, J. L. & R. W. Lewis. 1966. Composition of guttation fluid from rye, wheat, and barley seedlings. Plant Physiology 41: 373–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godlewski, A. 1884. Pp 682. In: F. B. Salisbury & C. W. Ross (eds). Quoted in ‘Plant physiology 4th edn’. 1992. Wadsworth Publishing Company, Belmont, USA.

    Google Scholar 

  • Haberlandt, G. 1914. Physiological plant anatomy. Macmillan, London.

    Google Scholar 

  • Hales, S. 1727. Vegetable staticks, i.e. An account of some statical experiments on the sap in vegetables. Innys and Woodward, London.

    Google Scholar 

  • Hayashi, T., A. Harada, T. Sakai & S. Takagi. 2006. Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion. Plant, Cell & Environment 29: 661–672.

    Article  CAS  Google Scholar 

  • Heinen, R. B., Q. Ye & F. Chaumont. 2009. Role of aquaporins in leaf physiology. Journal of Experimental Botany 60: 2971–2985.

    Article  CAS  PubMed  Google Scholar 

  • Hetherington, A. M. & F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901–908.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D. R. & T. C. Broyer. 1936. General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiology 11: 471–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook, N. M., E. T. Ahrens, M. J. Burns & M. A. Zwieniecki. 2001. In vivo observation of cavitation and embolism repair using magnetic resonance imaging (MRI). Plant Physiology 126: 27–31. doi:10.1104/pp.126.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, R. N. & P. Brimblecombe. 1994. Dew and guttation formation and environmental significance: agricultural and forest meteorology. Agricultural Meteorology 67: 173–190.

    Article  Google Scholar 

  • Ivanoff, S. S. 1963. Guttation injuries of plants. Botanical Review 29: 202–229.

    Article  CAS  Google Scholar 

  • Isayenkov, S., J. C. Isner & F. J. M. Maathuis. 2010. Vacuolar ion channels: Roles in plant nutrition and signaling. FEBS Letters 584: 1982–1988.

    Article  CAS  PubMed  Google Scholar 

  • Jasinski, M., E. Ducos, E. Martinoia & M. Boutry. 2003. The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and arabidopsis. Plant Physiology 131: 1169–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, L. P. V. 1945. Physiological studies on sap flow in the sugar maple, Acer saccharum Marsh. Canadian Journal of Research 23: 192–197.

    Article  Google Scholar 

  • Katou, K., T. Taura & M. Furumoto. 1987. A model for water transport in the stele of plant roots. Protoplasma 140: 123–132.

    Article  Google Scholar 

  • Kaldenhoff, R., L. Kai & N. Uehlein. 2014. Aquaporins and membrane diffusion of CO2 in living organisms. Biochimica et Biophysica Acta 1840: 1592–1595.

    Article  CAS  PubMed  Google Scholar 

  • ———, M. Ribas-Carbo, J. F. Sans, C. Lovisolo, M. Heckwolf & N. Uehlein. 2008. Aquaporins and plant water balance. Plant, Cell & Environment 31: 658–666.

    Article  CAS  Google Scholar 

  • Katsuhara, M., Y. T. Hanba, K. Shiratake & M. Maeshima. 2008. Expanding roles of plant aquaporins in plasma membranes and cell organelles. Functional Plant Biology 35: 1–14.

    Article  CAS  Google Scholar 

  • Kaufmann, M. R. & A. N. Eckard. 1971. Evaluation of water stress control with polyethylene glycols by analysis of guttation. Plant Physiology 47: 453–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. X. & E. Steudle. 2009. Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays. Journal of Experimental Botany 60: 547–556.

  • Klepper, B. & M. R. Kaufmann. 1966. Removal of salt from xylem sap by leaves and stems of guttating plants. Plant Physiology 41: 1743–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koiwai, H., K. Nakaminami, M. Seo, T. Toyomasu & T. Koshiba. 2004. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiology 134: 1697–1707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarnytsky, S., N. V. Borisjuk, L. G. Borisjuk, M. Z. Alam & I. Raskin. 2000. Production of recombinant proteins in tobacco guttation fluid. Plant Physiology 124: 927–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———, ———, N. Yakoby, A. Garvey & I. Raskin. 2006. Co-secretion of protease inhibitor stabilizes antibodies produced by plant roots. Plant Physiology 141: 1185–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———, A. Gaume, A. Garvey, N. Borisjuk & I. Raskin. 2004. A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots. Plant Cell Reports 22: 765–773.

  • Korolev, A. V. & V. N. Zholkevich. 1990. The effect of metabolic regulators on root pumping activity. Doki. Acad. Nauk SSSR 310: 507–511.

    CAS  Google Scholar 

  • Kramer, P. J. 1949. Plant and soil water relationships. McGraw Hill Book Co., New York.

    Google Scholar 

  • ——— & J. S. Boyer. 1995. Water relations of plants and soils. Academic, San Diego, CA.

    Google Scholar 

  • ——— & H. B. Currier. 1950. Water relations of plant cells and tissues. Annual Review of Plant Physiology 1: 265–284.

    Article  Google Scholar 

  • Kundt, W. 1998. The hearts of the plants. Current Science 75: 98–102.

    Google Scholar 

  • ——— & E. Gruber. 2006. The water circuit of the plants. do plants have hearts? Quantitative Biology 0603019: 1–19.

    Google Scholar 

  • Lehto, T. & J. J. Zwiazek. 2011. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21: 71–90.

    Article  PubMed  Google Scholar 

  • Lepeschkin, W. W. 1923. Uber active und passive wasserdrusen und wasserspalten. Berichte Der Deutschen Botanischen Gesellschaft 41: 298–300.

    Google Scholar 

  • Lersten, L. R. & J. D. Curtis. 1982. Hydathodes in Physocarpus (Rosaceae: Spiraeoideae). Canadian Journal of Botany 60: 850–855.

    Article  Google Scholar 

  • ——— & ———. 1985. Distribution and anatomy of hydathodes in Asteraceae. Botanical Gazette 146: 106–114.

    Article  Google Scholar 

  • Long, W. C., D. V. Sweet & H. B. Turkey. 1956. Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science 123: 1039–1040.

    Article  CAS  PubMed  Google Scholar 

  • Loo, D. D. F., T. Zeuthen, G. Chandy & E. M. Wright. 1996. Cotransport of water by the Na+/glucose cotransporter. Proceedings of the National Academy of Sciences of USA 93: 13367–13370.

    Article  CAS  Google Scholar 

  • Lundegardh, H. 1944. Bleeding and sap movement. Arkiv for Botanik 31: 1–56.

    CAS  Google Scholar 

  • ——— 1950. The translocation of salts and water through wheat roots. Physiologia Plantarum 3: 103–151.

    Article  Google Scholar 

  • Ma, J. K.-C., P. M. W. Drake & P. Christou. 2003. The production of recombinant pharmaceutical proteins in plants. Nature Review Genetics 4: 794–805.

    Article  CAS  Google Scholar 

  • ———, E. Barros, R. Bock, et al. 2005. Molecular farming for new drugs and vaccines— current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Report 6: 593–599.

    Article  CAS  Google Scholar 

  • Mahdieh, M., A. Mostajeran, T. Horie & M. Katsuhara. 2008. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant and Cell Physiology 49: 801–813.

    Article  CAS  PubMed  Google Scholar 

  • Maurel, C., L. Verdoucq, D. T. Luu & V. Santoni. 2008. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology 59: 595–624.

    Article  CAS  PubMed  Google Scholar 

  • McDowell, N., W. Pockman, C. Allen, D. Breshears, N. Cobb, T. Kolb, J. S. Sperry, A. West, D. Williams & E. Yepez. 2008. Mechanisms of plant survival and mortality during drought. Why do some plants survive while others succumb to drought? New Phytologist 178: 719–739.

    Article  PubMed  Google Scholar 

  • Mcintyre, G.I. 1994. The role of transpiration in phototropism of the Avena coleoptile: evidence of stomatal control of the phototropic response. Australian Journal of Plant Physiology 21: 359–375.

  • Meagher, R. B. & A. C. Heaton. 2005. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. The Journal of Industrial Microbiology and Biotechnology 32: 502–513.

    Article  CAS  PubMed  Google Scholar 

  • Mihucz, V. G., E. Tatar, I. Virág, E. Cseh, F. Fodor & G. Zaray. 2005. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Analytical and Bioanalytical Chemistry 383: 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Morth, J. P., B. P. Pedersen, M. J. Buch-Pedersen, J. P. Andersen, B. Vilsen, M. G. Palmgren & P. Nissen. 2011. A structural overview of the plasma membrane Na+, K + -ATPase and H + -ATPase ion pumps. Nature Reviews of Molecular Cell Biology 12: 60–70.

    Article  CAS  PubMed  Google Scholar 

  • Mozhaeva, L. V. & E. M. Bulycheva. 1971. Properties of a contractile protein isolated from pumpkin roots. Izvestiya Timiryazevskol Sel’skokhozyaistven-noi Akademii 2: 3–9.

    Google Scholar 

  • ——— & N. V. Pil’shchikova. 1972. Nature of pumping water process by plant roots. Izvestiya Timiryazevskol Sel’skokhozyaistven-noi Akademii 3: 3–15.

    Google Scholar 

  • Munting, A. 1672. Waare oeffening der planten. Jan Rieuwertsz, Amsterdam.

  • Ninkovic, V. & F. Baluska. 2010. Plant communication from ecological perspective. Springer, Berlin.

    Google Scholar 

  • Nobel, P. S. 2005. Physicochemical and environmental plant physiology, ed. 3rd. Elsevier, Amsterdam.

    Google Scholar 

  • Oertli, J. J. 1966. Active water transport in plants. Physiologia Plantarum 19: 809–817.

    Article  CAS  Google Scholar 

  • ——— 1986. Gains of water potential in plants. Studia Biophysica 115: 95–103.

    Google Scholar 

  • Ogura, T. 1958. Studies on upland rice plants. V. On bleeding and guttation of seedlings. Japanese Journal of Crop Science 27: 55–57.

    Article  Google Scholar 

  • Ozaki, K. & K. Tai. 1962. Nitrogen metabolism of paddy rice at heading. II. Nitrogenous constituents of guttation from the ear of boot stage. Soil Science and Plant Nutrition 8: 150–152.

    Article  Google Scholar 

  • Palmgren, M. G. 2001. H+-ATPases: powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology 52: 817–845.

    Article  CAS  PubMed  Google Scholar 

  • Passioura, J. B. & J. F. Angus. 2010. Improving productivity of crops in water-limited environments. Advances in Agronomy 106: 37–75.

    Article  Google Scholar 

  • Pedersen, B. P., M. J. Buch-Pedersen, J. P. Morth, M. G. Palmgren & P. Nissen. 2007. Crystal structure of the plasma membrane proton pump. Nature 450: 1111–1114.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, O. 1993. Long-distance water transport in aquatic plants. Plant Physiology 103: 1369–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • ——— 1994. Acropetal water transport in submerged plants. Botanica Acta 107: 61–65.

    Article  Google Scholar 

  • ——— 1998. The nature of water transport in aquatic plants. Pp 196–207. In: O. Pedersen (ed). Freshwater biology. Blackwell Publishing, NJ.

    Google Scholar 

  • ——— & K. Sand-Jensen. 1997. Transpiration does not control growth and nutrient supply in the amphibious plant, Mentha aquatica. Plant, Cell & Environment 20: 117–123.

    Article  CAS  Google Scholar 

  • Pickard, W. F. 2003a. The riddle of root pressure. I. Putting Maxwell’s demon to rest. Functional Plant Biology 30: 121–134.

    Article  Google Scholar 

  • ——— 2003b. The riddle of root pressure. II. Root exudation at extreme osmolalities. Functional Plant Biology 30: 135–141.

    Article  Google Scholar 

  • Piette, A. S., R. Derua, E. Waelkens, M. Boutry & G. Duby. 2011. A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins. Journal of Biological Chemistry 286: 18474–18482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilot, G., H. Stransky, D. F. Bushey, R. Pratelli, U. Ludewig, V. P. M. Wingate & W. B. Frommer. 2004. Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. Plant and Cell 16: 1827–1840.

    Article  CAS  Google Scholar 

  • Pillitteri, L. J., N. L. Bogenschutz & K. U. Torii. 2008. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant and Cell Physiology 49: 934–943.

    Article  CAS  PubMed  Google Scholar 

  • ———, D. B. Sloan, N. L. Bogenschutz & K. U. Torii. 2007. Termination of asymmetric cell division and differentiation of stomata. Nature 445: 501–505.

    Article  CAS  PubMed  Google Scholar 

  • Priestley, J. H. 1920. The mechanism of root pressure. New Phytologist 19: 153–212.

    Article  Google Scholar 

  • Quanzhi, Z., G. Erming, H. Pisheng & L. Qihong. 1999. Relation between bleeding potential in neck of spike and source-sink quality of rice. Scientia Agricultura Sinica 32: 101–106.

    Google Scholar 

  • Raleigh, G. J. 1946. The effect of various ions on guttation of the tomato. Plant Physiology 21: 194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybicki, E. P. 2009. Third international conference on plant-based vaccines and antibodies. Expert Review of Vaccines 8: 1151–1155.

    Article  PubMed  Google Scholar 

  • Scholander, P., E. Bradstreet, E. Hemmingsen & H. Hammel. 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148: 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A. C., S. Steier & M. Otto. 2009. Evaluation of the arsenic binding capacity of plant proteins under conditions of protein extraction for gel electrophoretic analysis. Talanta 77: 1830–1836.

    Article  CAS  PubMed  Google Scholar 

  • Schwenke, H. & E. Wagner. 1992. A new concept of root exudation. Plant, Cell & Environment 15: 289–299.

    Article  Google Scholar 

  • Scofield, G. N., T. Hirose, N. Aoki & R. T. Furbank. 2007. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. Journal of Experimental Botany 58: 3155–3169.

    Article  CAS  PubMed  Google Scholar 

  • Skoog, F., T. C. Broyer & K. A. Grossenbacher. 1938. Effects of auxin on rates, periodicity and osmotic relations in exudation. American Journal of Botany 25: 749–759.

    Article  CAS  Google Scholar 

  • Shepherd, V. A. 2012. At the roots of plant neurobiology: a brief history of the biophysical research of J.C. Bose. Science and Culture 78: 196–210.

    Google Scholar 

  • Shepherd, R. W. & G. J. Wagner. 2007. Phylloplane proteins: emerging defenses at the aerial frontline? Trends in Plant Science 12: 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Singh, G. 1986. Water stress and growth of upland rice. PhD Thesis, Dr. R.M.L. Avadh University, Faizabad, UP, India

  • Singh, R. 2009. J.C. Bose and the German scientific community: scientific and political context. Current Science 96: 419–423.

    Google Scholar 

  • Singh, S. 2004. Effect of water stress on physiology, yield and productivity of rice (Oryza sativa L.) cultivars. PhD Thesis, Dr. R.M.L. Avadh University, Faizabad, UP, India.

  • ——— 2013. Guttation: path, principles and functions. Australian Journal of Botany 61: 497–515.

    Article  Google Scholar 

  • ——— 2014a. Guttation: quantification, microbiology and implications for phytopathogy. Pp 187–214. In: U. Luttege, W. Beyschlag, & J. Cushman (eds). Progress in botany. Vol. 75. Springer, Berlin.

    Chapter  Google Scholar 

  • ——— 2014b. Guttation: new insights into agricultural implications. Advances in Agronomy 128: 97–135.

    Article  Google Scholar 

  • ——— 2016. Root Pressure: getting to the root of pressure. In ‘Progress in botany. Vol. 77’. (Eds. U. Luttege, W. Beyschlag, J. Cushman, Weigend) (Springer: Berlin) (In press)

  • Singh, G. & T. N. Singh. 1989. Root-mediated water transport to the shoot of rice. Current Science 58: 1134–1138.

    Google Scholar 

  • Singh, S. & T. N. Singh. 2013. Guttation 1: chemistry, crop husbandry and molecular farming. Phytochemistry Reviews 12: 147–172.

    Article  CAS  Google Scholar 

  • ———, J. S. Chauhan & T. N. Singh. 2008. Guttation: a potential yield enhancing trait in rice. Current Science 95: 455–456.

    Google Scholar 

  • ———, T. N. Singh & J. S. Chauhan. 2009a. Guttation in rice: occurrence, regulation, and significance in varietal improvement. Journal of Crop Improvement 23: 351–365.

    Article  Google Scholar 

  • ———, ——— & ———. 2009b. Water transport in crop plants with special reference to rice: key to crop production under global water crisis. Journal of Crop Improvement 23: 194–212.

    Article  Google Scholar 

  • Slewinski, T. L., A. Garg, G. S. Johal & D. M. Braun. 2010. Maize SUT1 functions in phloem loading. Plant Signaling & Behavior 5: 687–690.

    Article  CAS  Google Scholar 

  • ———, R. Meeley & D. M. Braun. 2009. Sucrose transporter1 functions in phloem loading in maize leaves. Journal of Experimental Botany 60: 881–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry, J. S. 1983. Observations on the structure and function of hydathodes in Blechnum lehmannii. American Fern Journal 73: 65–72.

    Article  Google Scholar 

  • Staiger, C. J., F. Baluska, D. Volkmann & P. W. Barlow. 2000. Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Steudle, E. 2001. The cohesion-tension mechanism and the acquisition of water by plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52: 847–875.

    Article  CAS  PubMed  Google Scholar 

  • Stocking, C. R. 1956a. Root pressure. Pp 581–595. In: W. Ruhland (ed). Handbuch der pflazenphysiologie. Springer, Berlin.

    Google Scholar 

  • ——— 1956b. Guttation and bleeding. Pp 489–502. In: W. Ruhland (ed). Encyclopedia of plant physiology. Springer, Berlin.

    Google Scholar 

  • Sutton, T., U. Baumann, J. Hayes, N. C. Collins, B.-J. Shi, T. Schnurbusch, A. Hay, G. Mayo, M. Pallotta, M. Tester & P. Langridge. 2007. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318: 1446–1449.

    Article  CAS  PubMed  Google Scholar 

  • Szarek, I. & K. Trebacz. 1999. The role of light-induced membrane potential changes in guttation in gametophytes of Asplenium trichomanes. Plant and Cell Physiology 40: 1280–1286.

    Article  CAS  Google Scholar 

  • Sze, H. 1984. H + -translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiologia Plantarum 61: 683–691.

    Article  CAS  Google Scholar 

  • ———, K. Schumacher, M. L. Muller, S. Padmanaban & L. Taiz. 2002. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. Trends in Plant Science 7: 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, F., M. E. Wisniewski & D. M. Glenn. 1991. Occlusion of water pores prevents guttation in older strawberry leaves. Journal of the American Society for Horticultural Science 116: 1122–1125.

    Google Scholar 

  • Taiz, L. & E. Zeiger. 2006. Plant physiology, ed. 4th. Sinauer Associates Inc, Massachusetts.

    Google Scholar 

  • Tanner, W. & H. Beevers. 1999. Does transpiration have an essential function in long-distance ion transport in plants? Plant, Cell & Environment 13: 745–750.

    Article  Google Scholar 

  • ——— & ———. 2001. Transpiration, a prerequisite for long-distance transport of minerals in plants? Proceedings of National Academy of Sciences, USA 98: 9443–9447.

    Article  CAS  Google Scholar 

  • Tappero, R., E. Peltier, M. Gräfe, K. Heidel, M. Ginder-Vogel, K. J. T. Livi, M. L. Rivers, M. A. Marcus, R. L. Chaney & D. L. Sparks. 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175: 641–654.

    Article  CAS  PubMed  Google Scholar 

  • Tarakanova, G. A., O. Y. Shvedova & V. N. Zholkevich. 1985. Electrochemical parameters and guttation of Pilobolus umbonatus Buller cells. Doklady Akademii Nauk SSSR 280: 1277–1280.

    CAS  Google Scholar 

  • ——— & V. N. Zholkevich. 1986. The study of electrochemical parameters kinetics of Pilobolus umbonatus Buller mucor fungus. Doklady Akademii Nauk SSSR 286: 504–508.

    CAS  Google Scholar 

  • Tazaki, T. 1939. On the nature of recretion from Colocasia antiquorum var. esculentum. Botanical Magazine 53: 524–533.

    Article  Google Scholar 

  • Telewski, F. W. 2006. A unified hypothesis of mechanoperception in plants. American Journal of Botany 93: 1466–1476.

    Article  PubMed  Google Scholar 

  • Testone, G., E. Condello, I. Verde, E. Caboni, M. A. Iannelli, L. Bruno, D. Mariotti, M. B. Bitonti & D. Giannino. 2009. The peach (Prunus persica [L.] Batsch) homeobox gene KNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars. Journal of Molecular Genetics and Genomics 282: 47–64.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, A. J., J. Andrews, B. J. Mulholland, J. M. T. McKee, H. W. Hilton, J. S. Horridge, G. D. Farquhar, R. C. Smeeton, I. R. A. Smillie, C. R. Black & I. B. Taylor. 2007. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiology 143: 1905–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree, M. T. 2003. Plant hydraulics: the ascent of water. Nature 423: 923.

    Article  CAS  PubMed  Google Scholar 

  • Van As, H. 2007. Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long-distance water transport. Journal of Experimental Botany 58: 734–761.

    Google Scholar 

  • Wang, W., X. Ben, H. Wang, J. Li, H. Huang & L. Xu. 2011. YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. Plant Physiology 157: 1805–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner, L. H. 2014. Root pressure and beyond: energetically uphill water transport into xylem vessels? Journal of Experimental Botany 65: 381–393.

    Article  CAS  PubMed  Google Scholar 

  • White, P. R. 1938. Root pressure: an unappreciated force in sap movement. American Journal of Botany 25: 223–227.

    Article  CAS  Google Scholar 

  • Wilson, J. K. (1923). The nature and reaction of water from hydathodes. Cornell university Agricultural Experiment Station Memoirs 65, USA.

  • Yarwood, C. E. 1952. Guttation due to leaf pressure favors fungus infections. Phytopathology 42: 520.

    Google Scholar 

  • Zaitseva, R. I., N. G. Minashina & I. I. Sudnitsyn. 1998. Influence of capillary-sorptive and osmotic moisture pressure in chernozem on the growth and guttation of barley. Eurasian Soil Science 31: 1075–1082.

    Google Scholar 

  • Zheng, M., M. Beck, J. Müller, T. Chen, X. Wang, et al. 2009. Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PLOS ONE 4(6), e5961. doi:10.1371/journal.pone.0005961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zholkevich, V. N. 1991. Root pressure. Pp 589–603. In: Y. Waisel, A. Eshel, & U. Kafkafi (eds). Plant roots, the hidden half. Marcel-Dekker, New York.

    Google Scholar 

  • ———, Chugunova, T. V., Korolev, A. V. (1989). The role of metabolic processes in root pumping activity. In ‘Water behavior of agricultural plants (Ed. M.D. Kushnirenko) pp. 12–16. (Stiintsa: Kishinev, USSR)

  • Zhu, J.-J., X.-F. Bai, Q.-M. Bu & X.-M. Jiang. 2010. An analysis to the driving forces for water and salt absorption in roots of maize seedlings under salt stress. Agricultural Sciences in China 9: 806–812.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author expresses his deep sense of gratitude to Mr. Tesfaye Wossen, Head of the Department of Plant Sciences and Mr. Sisay Yehuala, Dean of the College of Agriculture & Rural transformation, University of Gondar, Ethiopia for their continued support and inspiration. My sincere thanks go to the learned anonymous reviewer(s) for critical comments and valuable suggestions for the improvement of the manuscript. I also owe my debt to Prof. Dennis Stevenson, Editor of Botanical Review for giving me opportunity to write this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S. Guttation: Mechanism, Momentum and Modulation. Bot. Rev. 82, 149–182 (2016). https://doi.org/10.1007/s12229-016-9165-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-016-9165-y

Keywords

Navigation