Skip to main content
Log in

Glutamine synthetase type I (glnAI) represents a rewarding molecular marker in the classification of bifidobacteria and related genera

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The family Bifidobacteriaceae constitutes an important phylogenetic group that particularly includes bifidobacterial taxa demonstrating proven or debated positive effects on host health. The increasingly widespread application of probiotic cultures in the twenty-first century requires detailed classification to the level of particular strains. This study aimed to apply the glutamine synthetase class I (glnAI) gene region (717 bp representing approximately 50% of the entire gene sequence) using specific PCR primers for the classification, typing, and phylogenetic analysis of bifidobacteria and closely related scardovial genera. In the family Bifidobacteriaceae, this is the first report on the use of this gene for such purposes. To achieve high-value results, almost all valid Bifidobacteriaceae type strains (75) and 15 strains isolated from various environments were evaluated. The threshold value of the glnAI gene identity among Bifidobacterium species (86.9%) was comparable to that of other phylogenetic/identification markers proposed for bifidobacteria and was much lower compared to the 16S rRNA gene. Further statistical and phylogenetic analyses suggest that the glnAI gene can be applied as a novel genetic marker in the classification, genotyping, and phylogenetic analysis of isolates belonging to the family Bifidobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adékambi T, Butler RW, Hanrahan F, Delcher AL, Drancourt M, Shinnick TM (2011) Core gene set as the basis of multilocus sequence analysis of the subclass Actinobacteridae. PLoS One 6:e14792

    Article  Google Scholar 

  • Berthoud H, Chavagnat F, Haueter M, Casey MG (2005) Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. LWT-Food Science and Technolology 38:101–105

    Article  CAS  Google Scholar 

  • Bunešová V, Vlkova E, Rada V, Killer J, Musilova S (2014) Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benefic Microbes 5:377–388

    Article  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  Google Scholar 

  • Delétoile A, Passet V, Aires J, Chambaud I, Butel MJ, Smokvina T, Brisse S (2010) Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 161:82–90

    Article  Google Scholar 

  • Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R, Milani C, Mancabelli L, Ossiprandi MC, Ventura M (2017) Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 67:3987–3995

    Article  CAS  Google Scholar 

  • Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122–145

    Article  CAS  Google Scholar 

  • Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    Article  CAS  Google Scholar 

  • Hayward D, van Helden PD, Wiid IJ (2009) Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 9:48

    Article  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  Google Scholar 

  • Huys G, Vancanneyt M, D’Haene K, Falsen E, Wauters G, Vandamme P (2007) Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. Int J Syst Evol Microbiol 57:1442–1446

    Article  Google Scholar 

  • Jian W, Zhu L, Dong X (2001) New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 51:1633–1638

    Article  CAS  Google Scholar 

  • Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I, Benada O, Rada V, Kofroňová O (2010) Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 33:359–366

    Article  CAS  Google Scholar 

  • Killer J, Sedláček I, Rada V, Havlík J, Kopečný J (2013a) Reclassification of Bifidobacterium stercoris Kim et al. 2010 as a later heterotypic synonym of Bifidobacterium adolescentis. Int J Syst Evol Microbiol 63:4350–4353

    Article  CAS  Google Scholar 

  • Killer J, Ročková Š, Vlková E, Rada V, Havlík J, Kopečný J, Bunesová V, Benada O, Kofronová O, Pechar R, Profousová I (2013b) Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 63:4439–4446

    Article  CAS  Google Scholar 

  • Killer J, Havlik J, Bunešová V, Vlková E, Benada O (2014) Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol 64:2932–2938

    Article  CAS  Google Scholar 

  • Killer J, Mekadim C, Pechar R, Bunešová V, Mrázek J, Vlkova E (2018a) Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen 7:e00579

    Article  Google Scholar 

  • Killer J, Mekadim C, Pechar R, Bunešová V, Vlková E (2018b) The threonine-tRNA ligase gene region is applicable in classification, typing, and phylogenetic analysis of bifidobacteria. J Microbiol 56:713–721

    Article  CAS  Google Scholar 

  • Kopečný J, Mrázek J, Killer J (2010) The presence of bifidobacteria in social insects, fish and reptiles. Folia Microbiol (Praha) 55:336–339

    Article  Google Scholar 

  • Lan Y, Rosen G, Hershberg R (2016) Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome 4:18

    Article  Google Scholar 

  • Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C, Viappiani A, Mancabelli L, Mangifesta M, Taminiau B, Delcenserie V, van Sinderen D, Ventura M (2014) Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 80:6383–6394

    Article  Google Scholar 

  • Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L, Mangifesta M, Ferrario C, Modesto M, Mattarelli P, Killer J, van Sinderen D, Ventura M (2017) Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 18:568

    Article  Google Scholar 

  • Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  CAS  Google Scholar 

  • Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE, Hammes W, Pot B, Dicks L, Dellaglio F (2014) Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 64:1434–1451

    Article  Google Scholar 

  • Modesto M, Michelini S, Oki K, Biavati B, Watanabe K, Mattarelli P (2018) Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 68:575–581

    Article  CAS  Google Scholar 

  • Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15

    Article  CAS  Google Scholar 

  • Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Göker M (2018) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007. https://doi.org/10.3389/fmicb.2018.02007

    Article  PubMed  PubMed Central  Google Scholar 

  • Patwardhan A, Ray S, Roy A (2014) Molecular markers in phylogenetic studies – a review. J Phylogen Evolution Biol 2:131

    Google Scholar 

  • Pechar R, Killer J, Salmonová H, Geigerová M, Švejstil R, Švec P, Sedláček I, Rada V, Benada O (2017a) Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa). Int J Syst Evol Microbiol 67:2349–2356

    Article  CAS  Google Scholar 

  • Pechar R, Killer J, Švejstil R, Salmonová H, Geigerová M, Bunešová V, Rada V, Benada O (2017b) Galliscardovia ingluviei gen. nov., sp. nov., a thermophilic bacterium of the family Bifidobacteriaceae isolated from the crop of a laying hen (Gallus gallus f. domestica). Int J Syst Evol Microbiol 67:2403–2411

    Article  CAS  Google Scholar 

  • Sechovcová H, Killer J, Pechar R, Geigerová M, Švejstil R, Salmonová H, Mekadim C, Rada V, Vlková E, Kofroňová O, Benada O (2017) Alloscardovia venturai sp. nov., a fructose 6-phosphate phosphoketolase-positive species isolated from the oral cavity of a guinea-pig (Cavia aperea f. porcellus). Int J Syst Evol Microbiol 67:2842–2847

    Article  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  Google Scholar 

  • Tomasini N, Lauthier JJ, Llewellyn MS, Diosque P (2013) MLSTest: novel software for multi-locus sequence data analysis in eukaryotic organisms. Infect Genet Evol 20:188–196

    Article  CAS  Google Scholar 

  • Turner SL, Young JP (2000) The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Meylan V, Klaenhammer TR, Zink R (2003) Analysis, characterization, and loci of the tuf genes in lactobacillus and bifidobacterium species and their direct application for species identification. Appl Environ Microbiol 69:6908–6922

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Del Casale A, Dellaglio F, Neviani E, Fitzgerald GF, van Sinderen D (2006) Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 56:2783–2792

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Project Excellence (no. CZ.02.1.01/0.0/0.0/15_003/0000460), the Czech National Agency for Agricultural Research (project no. QJ1510338), and the Czech Health Research Council (project no. 16-27449A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Killer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killer, J., Mekadim, C., Bunešová, V. et al. Glutamine synthetase type I (glnAI) represents a rewarding molecular marker in the classification of bifidobacteria and related genera. Folia Microbiol 65, 143–151 (2020). https://doi.org/10.1007/s12223-019-00716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00716-0

Navigation