Skip to main content
Log in

Partial characterization of a crude cold-active lipase from Rhodococcus cercidiphylli BZ22

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Cold-active lipase production by the psychrophilic strain Rhodococcus cercidiphylli BZ22 isolated from hydrocarbon-contaminated alpine soil was investigated. Depending on the medium composition, high cell densities were observed at a temperature range of 1–10 °C in Luria–Bertani (LB) broth or 1–30 °C in Reasoner’s 2A (R2A). Maximum enzyme production was achieved at a cultivation temperature of 1–10 °C in LB medium. About 70–80 % of the secreted enzyme was bound to the cell and was highly active as a cell-immobilized lipase which exhibited good reusability; more than 60 % of the initial lipase activity was retained after five-fold reuse. The properties of the lipase produced by the investigated strain were compared with those of a mesophilic porcine pancreatic lipase (PPL). The thermal stability of the cell-immobilized bacterial lipase was higher than that of the extracellular enzyme. Highest activity was detected at 30 °C for the cell-immobilized enzyme and for PPL, while the extracellular enzyme displayed highest activity at 10–20 °C. The bacterial lipase hydrolyzed p-nitrophenyl (p-NP) esters with different acyl chain lengths (C2–C18). The highest hydrolytic activity was obtained with p-NP-butyrate (C4) as substrate, while the highest substrate affinity was obtained with p-NP-dodecanoate (C12) as substrate, indicating a clear preference of the enzyme for medium acyl chain lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407

    Article  CAS  Google Scholar 

  • Benjamin S, Pandey A (1998) Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14:1069–1087

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Clark KJ, Chaplin FW, Harcum SW (2004) Temperature effects on product-quality-related enzymes in batch CHO cell cultures producing recombinant tPA. Biotechnol Prog 20:1888–1892

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold adapted enzymes: from fundamentals to biotechnology. Trend Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157

    CAS  PubMed  Google Scholar 

  • Hatzinikolaou DG, Mamma D, Christakopoulos P, Kekos D (2007) Cell bound and extracellular glucose oxidases from Aspergillus niger BTL: evidence for a secondary glycosylation mechanism. Appl Biochem Biotechnol 142:29–43

    Article  CAS  PubMed  Google Scholar 

  • Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170

    Article  CAS  PubMed  Google Scholar 

  • Huang AHC (1984) Studies on specificity of lipases. In: Borgstrom B, Brockmann HL (eds) Lipases. Elsevier, Amsterdam, pp 419–442

    Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Kademi A, Danielle L, Ajain H (2005) Lipases. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asiatech, India, pp 297–318

    Google Scholar 

  • Kaur P, Singh B, Böer E, Straube N, Piontek M, Satyanarayana T, Kunze G (2010) Pphy—a cell-bound phytase from the yeast Pichia anomala: molecular cloning of the gene PPHY and characterization of the recombinant enzyme. J Biotechnol 149:8–15

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Mercier C, Frantz BM, Whelan WJ (1972) An improved purification of cell-bound pullulanase from Aerobacter aerogenes. Eur J Biochem 26:1–9

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity – a useful indicator of oil biodegradation. Biotechnol Tech 13:859–863

    Article  CAS  Google Scholar 

  • Margesin R, Feller G, Gerday C, Rusell N (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The encyclopedia of environmental microbiology. Wiley, New York, pp 871–885

    Google Scholar 

  • Margesin R, Hämmerle M, Tscherko D (2007) Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers and incubation time. Microbial Ecol 53:259–269

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin Heidelberg, p 462

    Google Scholar 

  • Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeter Biodegr 84:185–191

    Article  CAS  Google Scholar 

  • Matsumoto M, Kida K, Kondo K (2001) Enhanced activities of lipase pretreated with organic solvents. J Chem Technol Biotechnol 76:1070–1073

    Article  CAS  Google Scholar 

  • Noel M, Combes D (2003) Effects of temperature and pressure on Rhizomucor miehei lipase stability. J Biotechnol 102:23–32

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol V (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  PubMed  Google Scholar 

  • Seo S, Lee Y-S, Yoon S-H, Kim S-J, Cho J-Y, Hahn B-S, Koo B-S, Lee C-M (2014) Characterization of a novel cold-active esterase isolated from swamp sediment metagenome. World J Microbiol Biotechnol 30:879–886

    Article  CAS  PubMed  Google Scholar 

  • Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tutino ML, di Prisco G, Marino G, de Pascale D (2009) Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett 16:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Tutino ML, Parrilli E, de Santi C, Giuliani M, Marino G, de Pascale D (2010) Cold-adapted esterases and lipases: a biodiversity still under-exploited. Curr Chem Biol 4:74–83

    CAS  Google Scholar 

  • Voigt B, Schweder T, Sibbald MJ, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268–281, Erratum in: Proteomics 6:1704–1705

    Article  CAS  PubMed  Google Scholar 

  • Yu DH, Wang Z, Chen P, Jin L, Cheng YM, Zhou JG, Cao SG (2007) Microwave-assisted resolution of (R,S)-2-octanol by enzymatic transesterification. J Mol Catal B Enzym 48:51–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Austrian Academic Exchange Service (OEAD) in charge of the administration of the Eurasia-Pacific Uninet scholarship, National Natural Science Foundation of China (No. 31100574) and Fund from Science and Technology Department of Jilin Province (No. 20110407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Margesin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Margesin, R. Partial characterization of a crude cold-active lipase from Rhodococcus cercidiphylli BZ22. Folia Microbiol 59, 439–445 (2014). https://doi.org/10.1007/s12223-014-0318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0318-2

Keywords

Navigation