Skip to main content
Log in

Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The aim of present work was to study chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa MN1 isolated from oil-contaminated soil. The results of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that total rhamnolipids (RLs) contained 16 rhamnolipid homologues. Di-lipid RLs containing C10-C10 moieties were by far the most predominant congeners among mono-rhamnose (53.29 %) and di-rhamnose (23.52 %) homologues. Mono-rhamnolipids form 68.35 % of the total congeners in the RLs. Two major fractions were revealed in the thin layer chromatogram of produced RLs which were then purified by column chromatography. The retardation factors (R f) of the two rhamnolipid purple spots were 0.71 for RL1 and 0.46 for RL2. LC-MS/MS analysis proved that RL1 was composed of mono-RLs and RL2 consisted of di-RLs. RL1 was more surface-active with the critical micelle concentration (CMC) value of 15 mg/L and the surface tension of 25 mN/m at CMC. The results of biological assay showed that RL1 is a more potent antibacterial agent than RL2. All methicillin-resistant Staphylococcus aureus (MRSA) strains were inhibited by RLs that were independent of their antibiotic susceptibility patterns. RLs remarkably enhanced the activity of oxacillin against MRSA strains and lowered the minimum inhibitory concentrations of oxacillin to the range of 3.12–6.25 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFU:

Colony-forming unit

CMC:

Critical micelle concentration

FIC:

Fractional inhibitory concentration

LC-MS:

Liquid chromatography-mass spectrometry

MHB:

Mueller–Hinton broth

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

MSM:

Mineral salts medium

PTCC:

Persian type culture collection

R f :

Retardation factor

RL:

Rhamnolipid

TIC:

Total ion chromatogram

TLC:

Thin layer chromatography

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physiochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Akbarzadeh T, Fallah Tafti A, Samadi N, Foroumadi A, Amanlou M, Faramarzi MA, Shafiee A (2010) Synthesis and cloxacillin antimicrobial enhancement of 2-methylsulfonylimidazolyl-1,4-dihydropyridine derivatives. Daru 18:118–123

    PubMed  CAS  Google Scholar 

  • Chen SY, Wei YH, Chang JS (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74

    Article  PubMed  CAS  Google Scholar 

  • Cohen R, Exerowa D (2007) Surface forces and properties of foam films from rhamnolipid biosurfactants. Adv Colloid Interface 135:24–34

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactant and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Déziel E, Lépine F, Dennie D, Biosmenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphtalene. Biochim Biophys Acta 1440:244–252

    Article  PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from growing culture of Pseudomonas aeruginosa strain from 57RP. Biochim Biophys Acta 1485:145–152

    Article  PubMed  Google Scholar 

  • Emami S, Foroumadi A, Faramarzi MA, Samadi N (2008) Synthesis and Antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch Pharm Chem Life Sci 341:42–48

    Article  CAS  Google Scholar 

  • Emami S, Foroumadi A, Samadi N, Faramarzi MA, Rajabalian S (2009) Conformationally constrained analogs of n-substituted piperazinylquinolones: synthesis and antibacterial activity of N-(2,3-Dihydro-4-hydroxyimino-4 H-1-benzopyran-3-yl)-piperazinylquinolones. Arch Pharm Chem Life Sci 342:405–411

    Article  CAS  Google Scholar 

  • Glover RE, Smith RR, Jones MV, Jackson SK, Rowlands CC (1999) An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol Lett 177:57–62

    Article  PubMed  CAS  Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnol Bioeng 81:316–322

    Article  PubMed  CAS  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glyco-lipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  • Khalaj A, Nakhjiri M, Negahbani AS, Samadizadeh M, Firoozpour L, Rajabalian S, Samadi N, Faramarzi MA, Adibpour N, Shafiee A, Foroumadi AR (2011) Discovery of a novel nitroimidazolyleoxazolidinone hybrid with potent anti gram-positive activity: synthesis and antibacterial evaluation. Eur J Med Chem 46:65–70

    Article  PubMed  CAS  Google Scholar 

  • Krieg NR, Holt JG (2001) Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Kumar KA, Mazumdar K, Dutta NK, Karak P, Dastidar SG, Ray R (2004) Evaluation of synergism between the aminoglycoside antibiotic streptomycin and the cardiovascular agent amlodipine. Biol Pharm Bull 27:1116–1120

    Article  CAS  Google Scholar 

  • Kurup TR, Wan LS, Chan LW (1991) Effect of surfactants on the antibacterial activity of preservatives. Pharm Acta Helv 66:274–280

    PubMed  CAS  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–23

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Choi Y, Woo ER, Lee DG (2009) Antibacterial and synergistic activity of isocryptomerin isolated from Selaginella tamariscina. J Microbiol Biotechnol 19:204–207

    Article  PubMed  CAS  Google Scholar 

  • Lindhardt TJ, Bakhit R, Danies L, Mayerl R, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368

    Article  Google Scholar 

  • Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA (2010) Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B 81:397–405

    Article  CAS  Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  PubMed  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produce by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220

    Article  PubMed  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2000) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by Pseudomonas aeruginosa UG2. Microbiol Res 155:1–8

    Article  Google Scholar 

  • Menichetti F (2005) Current and emerging serious gram-positive infections. Clin Microbiol Infec 11:22–28

    Article  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  PubMed  CAS  Google Scholar 

  • Muroi H, Nihei KI, Tsujimoto K, Kubo I (2004) Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorg Med Chem 12:583–587

    Article  PubMed  CAS  Google Scholar 

  • NCCLS (2006) Methods for Dilution antimicrobial susceptibility tests for bacteria that grow aerobically. approved standard M7-A7, 7th edition, Wayne, Pennsylvania.

  • Nielsen L, Kadavy D, Rajagopal S, Drijber R, Kenneth W (2005) Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176

    Article  PubMed  CAS  Google Scholar 

  • Nitschke M, Costa SGVAO, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Progr 21:1593–1600

    Article  CAS  Google Scholar 

  • Özdemir G, Peker S, Helvaci ŞŞ (2004) Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloid Surface Physicochem Eng Aspect 234:135–143

    Article  Google Scholar 

  • Pashynska VA (2009) Mass spectrometric study of rhamnolipid biosurfactants and their interactions with cell membrane phospholipids. Biopolym Cell 25:504–508

    CAS  Google Scholar 

  • Patrone V, Campana R, Vittoria E, Baffone W (2010) In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus. Curr Microbiol 60:237–241

    Article  PubMed  CAS  Google Scholar 

  • Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole P (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High and low molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  PubMed  CAS  Google Scholar 

  • Sadowska B, Walencka E, Wieckowska-Szakiel M, Różalska B (2010) Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus. Folia Microbiol 55:497–501

    Article  CAS  Google Scholar 

  • Salimnia H, Brown WJ (2005) Detection of oxacillin resistance in Staphylococcus aureus: comparison of phoenix oxacillin and cefoxitin MICs, microscan oxacillin MIC, oxacillin and cefoxitin disk diffusion, and mecA gene detection. ICAAC 24:12–20

    Google Scholar 

  • Sook KE, Jeong SI, Kim JH, Park C, Kim SM, Kim JK, Lee KM, Lee SH, So H, Park R (2009) Synergistic effects of the combination of 20-hydroxyecdysone with ampicillin and gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol Biotechnol 19:1576–1581

    Google Scholar 

  • Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644

    Article  PubMed  CAS  Google Scholar 

  • Velho RV, Medina LFC, Segalin J, Brandelli A (2011) Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol 56:297–303

    Article  CAS  Google Scholar 

  • Youssef NH, Dunacn KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganism. J Microbiol Meth 56:339–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Tehran University of Medical Sciences (no. 5664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Samadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi, N., Abadian, N., Ahmadkhaniha, R. et al. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus . Folia Microbiol 57, 501–508 (2012). https://doi.org/10.1007/s12223-012-0164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0164-z

Keywords

Navigation