Skip to main content

Advertisement

Log in

Core promoters of the penicillin biosynthesis genes and quantitative RT-PCR analysis of these genes in high and low production strain of Penicillium chrysogenum

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The transcription start points of the penicillin biosynthesis genes from Penicillium chrysogenum were mapped using the primer extension method. For each of the three genes consensus sequences of the core promoter elements were identified, supporting the notion that the basal transcription of these genes is mediated separately. Interestingly, transcription start of the pcbC gene is located within the potential Inr element with no TATA box-like sequence being found at expected position. This is in contrast to pcbAB and penDE genes with proposed TATA boxes or even to Aspergillus nidulans ipnA (pcbC) gene indicating possible differences in basal transcription regulation. Using the quantitative RT-PCR analysis the expression of all three biosynthesis genes was monitored in both the high and low production strain of P. chrysogenum during a 3-d cultivation under production conditions. The differences were found between the strains in time regulation and transcript levels of the biosynthesis genes. Furthermore, we showed that the effect of higher gene dosage on productivity in the production strain is amplified by more efficient transcription of the biosynthesis genes with the RNA levels ≈37- and 12-times higher, respectively, than in a low production strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonowitz Y., Cohen G., Martín J.F.: Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Ann.Rev.Microbiol. 46, 461–495 (1992).

    Article  CAS  Google Scholar 

  • Barredo J.L., Cantoral J.M., Alvarez E., Díez B., Martín J.F.: Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol.Gen.Genet. 216, 91–98 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Brakhage A.A., Browne P., Turner G.: Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J.Bacteriol. 174, 3789–3799 (1992).

    CAS  PubMed  Google Scholar 

  • Brakhage A.A.: Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol.Mol.Biol.Rev. 62, 547–585 (1998).

    CAS  PubMed  Google Scholar 

  • Brakhage A.A., Spröte P., Al-Abdallah Q., Gehrke A., Plattner H., Tüncher A.: Regulation of penicillin biosynthesis in filamentous fungi. Adv.Biochem.Eng.Biotechnol. 88, 45–90 (2004).

    CAS  PubMed  Google Scholar 

  • Chu Y.W., Renno D., Saunders G.: Detection of a protein which binds specifically to the upstream region of the pcbAB gene in Penicillium chrysogenum. Curr.Genet. 27, 184–189 (1995).

    Article  Google Scholar 

  • Díez B., Gutiérez S., Barredo J.L., van Solingen P., Lucia H.M., van der Voort L.H.M., Martín J.F.: The cluster of penicillin biosynthesis gene. Identification and characterization of the pcbAB gene encoding the α-(aminoadipylcysteinyl)-valine synthetase and linkage to the pcbC and pen DE genes. J.Biol.Chem. 256, 16358–16365 (1990).

    Google Scholar 

  • Elander R.P.: Industrial production of α-lactam antibiotics. Appl.Microbiol.Biotechnol. 61, 385–392 (2003).

    CAS  PubMed  Google Scholar 

  • Feng B., Friedlin E., Marzluf G.A.: A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl.Environ.Microbiol. 60, 4432–4439 (1994).

    CAS  PubMed  Google Scholar 

  • Feng B., Friedlin E., Marzluf G.A.: Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes. Curr.Genet. 27, 351–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Cañón J.M., Peñalva M.A.: Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol.Gen.Genet. 246, 110–118 (1995).

    Article  PubMed  Google Scholar 

  • Gunnarsson N., Eliasson A., Nielsen J.: Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Adv.Biochem.Eng.Biotechnol. 88, 137–178 (2004).

    CAS  PubMed  Google Scholar 

  • Gutiérrez S., Díez B., Alvarez E., Barredo J.L., Martín J.F.: Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Mol.Gen.Genet. 225, 56–64 (1991).

    Article  PubMed  Google Scholar 

  • Gutiérrez S., Fierro F., Casqueiro J., Martín J.F.: Gene organization and plasticity of the β-lactam genes in different filamentous fungi. Antonie van Leeuwenhoek75, 81–94 (1999).

    Article  PubMed  Google Scholar 

  • Kormanec J.: Analyzing the developmental expression of sigma factors with S1-nuclease mapping, pp. 481–494 in C.H. Chein (Ed.): Nuclease Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa (NJ, USA) 2001.

    Chapter  Google Scholar 

  • Kosalková K., Marcos A.T., Fierro F., Hernando-Rico V., Gutiérrez S., Martín J.F.: A novel heptameric sequence (TTA GTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J.Biol.Chem. 275, 2423–2430 (2000).

    Article  PubMed  Google Scholar 

  • Kosalková K., Rodríguez-Sáiz M., Barredo J.L., Martín J.F.: Binding of the PTA1 transcriptional activator to the divergent promoter region of the first two genes of the penicillin pathway in different Penicillium species. Curr.Genet. 52, 229–237 (2007).

    Article  PubMed  Google Scholar 

  • Kosalková K., García-Estrada C., Ullán R.V., Godio R.P., Feltrer R., Teijeira F., Mauriz E., Martín J.F.: The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie91, 214–225 (2009).

    Article  PubMed  Google Scholar 

  • Leiter E., Emri T., Gyémánt G., Nagy I., Pócsi I., Winkelmann G., Pócsi I.: Penicillin V production by Penicillium chrysogenum in the presence of Fe3+ and in low-iron culture medium. Folia Microbiol. 46, 127–132 (2001).

    Article  CAS  Google Scholar 

  • Litzka O., Bergh K.T., Brakhage A.A.: Analysis of the regulation of Aspergillus nidulans penicillin biosynthesis gene aat (penDE) encoding acyl coenzyme A:6-aminopenicillanic acid acyltransferase. Mol.Gen.Genet. 249, 557–569 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Martín J.F.: Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J.Bacteriol. 182, 2355–2362 (2000).

    Article  PubMed  Google Scholar 

  • Nemec P., Baráth Z., Betina V., Kutková M.: Antibiotic activity of fungi isolated from soil samples from Indonesia. Folia Microbiol. 9, 383–386 (1964).

    Article  Google Scholar 

  • Nielsen J.: Physiological engineering aspects of Penicillium chrysogenum. World Scientific Publishing, Singapore 1997.

    Google Scholar 

  • Nüesch J., Heim J., Treichler H.-J.: The biosynthesis of sulfur containing β-lactam antibiotics, Ann.Rev.Microbiol. 41, 51–75 (1987).

    Article  Google Scholar 

  • Pérez-Esteban B., Orejas M., Gómez-Pardo E., Peñalva M.A.: Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol.Microbiol. 9, 881–895 (1993).

    Article  PubMed  Google Scholar 

  • Revilla G., López-Nieto M.J., Luengo J.M., Martín J.F.: Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J.Antibiot. 37, 781–789 (1984).

    CAS  PubMed  Google Scholar 

  • Rodríguez-Sáiz M., Díez B., Barredo J.L.: Why did the Fleming strain fail in penicillin industry? Fungal Genet.Biol. 42, 464–470(2005).

    Article  PubMed  Google Scholar 

  • Skovierova H., Rowley G., Rezuchova B., Homerova D., Lewis C., Roberts M., Kormanec J.: Identification of the σE regulon of Salmonella enterica serovar Typhimurium. Microbiology152, 1347–1359 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Smith D.J., Bumham M.K.R., Bull J.H., Hodgson J.E., Ward J.M., Browne P., Brown J., Barton B., Earl A.J., Turner G.: β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J. 9, 741–747 (1990a).

    CAS  PubMed  Google Scholar 

  • Smith D.J., Earl A.J., Turner G.: The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421 073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 9, 2743–2750 (1990b).

    CAS  PubMed  Google Scholar 

  • Spížek J., Tichý P.: Some aspects of overproduction of secondary metabolites. Folia Microbiol. 40, 43–50 (1995).

    Article  Google Scholar 

  • Theilgaard H.B., van den Berg M., Mulder C., Bovenberg R., Nielsen J.: Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol.Bioeng. 72, 379–388 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Šmidák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šmidák, R., Jopčík, M., Kralovičová, M. et al. Core promoters of the penicillin biosynthesis genes and quantitative RT-PCR analysis of these genes in high and low production strain of Penicillium chrysogenum . Folia Microbiol 55, 126–132 (2010). https://doi.org/10.1007/s12223-010-0019-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0019-4

Keywords

Navigation