Skip to main content
Log in

Some aspects of overproduction of secondary metabolites

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Different approaches used to increase production of secondary metabolites and construct overproducing strains of microorganisms are reviewed. Overproduction of secondary metabolites incuudes the physiological control,e.g. feed-back inhibition, carbon and energy source regulation, nitrogen source regulation, phosphate regulation and the effect of autoregulatory compounds. The genetic control of overproduction of secondary metabolites includes mechanisms similar to those controlling the expression of primary metabolism coding genes, although the genes specifying biosynthesis of secondary metabolites and their expression have some particular features. Possible future trends in the study of overproduction of secondary metabolites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonowitz Y.: Nitrogen metabolite regulation of antibiotic biosynthesis.Ann. Rev. Microbiol.34, 209–233 (1980).

    Article  CAS  Google Scholar 

  • Aharonowitz Y., Demain A.L.: Nitrogen nutrition and regulation of cephalosporin production inStreptomyces clavuligerus.Can J Microbiol.25, 61–67 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Aharonowitz Y., Demain A.L.: Thought on secondary metabolism.Biotechnol. Bioeng.22 (Suppl. 1) 5 (1980).

    PubMed  CAS  Google Scholar 

  • Ahmed Z.U., Shapiro S., Vining L.C.: Excretion of α-ketoacids by strains ofStreptomyces venezuelae.Can J. Microbiol.30, 1014–1021 (1984).

    PubMed  CAS  Google Scholar 

  • Baumberg S., Hunter J.S., Rhodes P.M.:Microbial Products: New Approaches. Cambridge University Press, Cambridge, UK 1989.

    Google Scholar 

  • Baumberg S., Krügel H., Noack D.: Genetics and product formation inStreptomyces.FEMS Symposium no. 55. Plenum Press, New York-London 1991.

    Google Scholar 

  • Běhal V., Hoštálek Z., Vaněk Z.: Anhydrotetracycline oxygenase activity and biosynthesis of tetracyclines inStreptomyces aureofaciens. Biotechnol. Lett. 177–182 (1979).

  • Beppu T.: Pleitropic regulatory mechanisms of secondary metabolism inStreptomyces, pp. 165–181 inOverproduction of Microbial Metabolites, Strain Improvement and Process Control Strategies. (Z. Vaněk, Z. Hošt’álek, Eds). Butterworths, London, 1986.

    Google Scholar 

  • Beppu T.: Some aspects on the secondary metabolites and cellular differentiation.Internat. Conf. on Microbial Secondary Metabolism, Interlaken 1994.

  • Boretti G., Di Marco A., Julita P., Raggie F., Bardi U.: Presenza degli enzimi dellavia esosomonofosfato ossidativa nelloStreptomyces aureofaciens.G. Microbiol.1, 406–416 (1956).

    CAS  Google Scholar 

  • Braã A.F., Wolfe S., Demain A.L.: Ammonium repression of cephalosporin production byStreptomyces clavuligerus.Can. J. Microbiol.31, 736–743 (1985).

    Google Scholar 

  • Braña A.F., Paiva N., Demain A.L.: Pathways and regulation of ammonium assimilation inStreptomyces clavuligerus.J. Gen. Microbiol.132, 1305–1317 (1986).

    Google Scholar 

  • Bushell M.E.: The process physiology of secondary metabolite production, pp. 95–120 inMicrobial Products: New Approaches, (S. Baumberg, J.S. Hunter, P. Rhodes, Eds.). Cambridge University Press, Cambridge (1989).

    Google Scholar 

  • Castro J.M., Liras P., Cortés J., Martin J.F.: Regulation of α-aminoadipyl-cysteinylvaline, isopenicillin N synthetase, isopenicillin N isomerase and deacetoxycephalosporin C synthetase by nitrogen sources inStreptomyces lactamdurans.Appl. Microbiol. Biotechnol.22, 32–40 (1985).

    Article  CAS  Google Scholar 

  • Chater K.F.: Sporulation inStreptomyces, pp. 277–299 inProcaryotic Development (I. Smith, R.A. Slepecky, P. Setlow, Eds.). Am. Soc. Microbiol., Washington (DC) 1989.

    Google Scholar 

  • Chater K.F.: Genetic regulation of secondary metabolic pathways inStreptomyces, pp. 144–162 inSecondary Metabolites Their Function and Evolution. (D.Y. Chedwick, J. Whelan, Eds.).Ciba Foundation Symposium 171. John Wiley & sons, Chichester (England) 1992.

    Chapter  Google Scholar 

  • Chung S.T., Grose L.L.: Transposon Tn4556 mediated DNA insertion and side directed mutagenesis, Vol. I, pp. 207–218.Proc. 6th Internat. Symp. Genetics of Industrial Microorganisms (H. Helslot, J. Davies, J. Florent, L. Bobichon, G. Durand, L. Penasse, Eds). Strassbourg 1990.

  • Cimburková E., Zima J., Novák J., Vaněk Z.: Nitrogen regulation of avermectins biosynthesis inStreptomyces avermitilis in a chemically defined medium.J. Basic Microbiol.28, 491–499 (1988).

    Article  Google Scholar 

  • Corcoran J.W.: Biochemical mechanisms in the biosynthesis of erythromycins, pp. 132–174, inAntibiotics IV. Biosynthesis, (J.W. Corcoran, Ed). Springer-Verlag, Berlin-Heidelberg 1981.

    Google Scholar 

  • Cundliffe E.: How antibiotic-producing organisms avoid suicide.Ann. Rev. Microbiol.43, 207–233 (1989).

    Article  CAS  Google Scholar 

  • Čurdová E., Křemen A., Vaněk Z., Hošťálek Z.: Regulation and biosynthesis of secondary metabolites. XVIII. Adenylate level and chlortetracycline production inStreptomyces aureofaciens.Folia Microbiol.21, 481–487 (1976).

    Article  Google Scholar 

  • Demain A.L.: Overproduction of microbial metabolites and enzymes due to alternation of regulation.Adv. Biochem. Eng.1, 113–142 (1971).

    Article  CAS  Google Scholar 

  • Demain A.L.: Mutation and the production of secondary metabolites.Adv. Appl. Microbiol.16, 177–202 (1973).

    PubMed  CAS  Google Scholar 

  • Demain A.L.: How do antibiotic-producing microorganisms avoid suicide?Ann. N.Y. Acad. Sci.235, 601 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Demain A.L.: Catabolite regulation in industrial microbiology, pp. 3–20 inOverproduction of Microbiol Products, (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds). Academic Press, New York 1982.

    Google Scholar 

  • Demain A.L.: Control of secondary metabolism in Actinomycetes, pp. 215–225, inBiological, Biochemical and Biomedical Aspects of Actinomycetes, (G. Szabo, S. Biro, M. Goodfellow, Eds).Proc. Sixth Internat. Symp. Actinomyces Biology, Academiai Kiado, Budapest 1986.

    Google Scholar 

  • Demain A.L.: Carbon source regulation of idiolite biosynthesis in actinomycetes. pp. 127–134 inRegulation of Secondary Metabolism in Actinomycetes, (S. Shapiro, Ed.). CRC Press, Boca Raton 1989.

    Google Scholar 

  • Demain A.L.: Microbial Secondary Metabolism: a New Theoretical Frontier for Academia, a New Opportunity for Industry.Internat. Conference on Microbial Secondary Metabolism, Interlaken 1994.

  • Doull J.L., Vining L.C.: Physiology of antibiotic production in actinomycetes and some underlying control mechanisms.Biotech. Adv.8, 141–158 (1990).

    Article  CAS  Google Scholar 

  • Dykstra K.H., Wang Y.: Feedback regulation and the intracellular protein profile ofStreptomyces griseus in a cycloheximide fermentation.Appl. Microbiol. Biotechnol.34, 191–197 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Elander R.P., Vournakis J.N.: Genetic aspects of overproduction of antibiotics and other secondary metabolites, pp. 63–79 inOverproduction of Microbial Metabolites Strain Improvement and Process Control Strategies, (Z. Vaněk, Z. Hošt’álek, Eds). Butterworths, London 1986.

    Google Scholar 

  • Epps H.M.R., Gale E.F.: The influence of the presence of glucose during growth on the enzymic activities ofEscherichia coli: comparison of the effect with that produced by fermentation acids.Biochem. J.36, 619–623 (1942).

    PubMed  CAS  Google Scholar 

  • Fernández-Moreno M.A., Caballero J.L., Hopwood D.A., Malpartida F.: Theact cluster contains regulatory and antibiotic export genes, direct targets for translational control by thebldA tRNA gene ofStreptomyces.Cell66, 769–780, (1991).

    Article  PubMed  Google Scholar 

  • Gil J.A., Naharro G., Villanueva J.R., Martín J.F.: Characterization and regulation ofp-aminobenzoic acid synthase fromStreptomyces griseus.J. Gen. Microbiol.131, 1279 (1985).

    PubMed  CAS  Google Scholar 

  • Gräfe U.: Autoregulatory secondary metabolites from actinomycetes, pp. 75–126 inRegulation of secondary metabolism in actinomycetes, (S. Shapiro, Ed.). CRC Press, Boca Raton 1989.

    Google Scholar 

  • Gräfe U., Bocker H., Thrum H.: Regulation ofo-aminobenzoic acid on the biosynthesis of nourseothricin in cultures ofStreptomyces noursei JA 3890b.Z. Allg. Mikrobiol.17, 201–209 (1977).

    Article  PubMed  Google Scholar 

  • Hoeksema H., Bannister B., Birkenmeyer R.D., Kagan F., Magerlein B.J..McKellear F.A., Schroeder W., Slomp G., Herr R.R.: Chemical studies on lincomycin I. The structure of lincomycin.J. Am. Chem. Soc.86, 4223 (1964).

    Article  CAS  Google Scholar 

  • Hopwood D.A., Sherman D.H., Khosla C., Bibb M.J., Simpson T.J., Fernández M., Malpartida F.: Hybrid pathways for the production of secondary metabolites. Abstract Book 56-4, p. 37.6th Internat. Symp. Genetics of Industrial Microorganisms (GIM 90), Strassbourg 1990.

  • Horinouchi S., Kito M., Nishyitama M., Furuy K., Hong S.K., Miyake K., Beppu T.: Primary structure of AfsR, a global regulatory protein for secondary metabolite formation inStreptomyces coelicolor A3 (2)Gene95, 45–56 (1990).

    Article  Google Scholar 

  • Horinouchi S., Beppu T.: Autoregulatory factors and communication in actinomycetes.Ann. Rev. Microbiol.46, 377–398 (1992).

    Article  CAS  Google Scholar 

  • Janglová Z., Suchý J., Vaněk Z.: Regulation of biosynthesis of secondary metabolites. VII. Intercellular adenosine-5-triphosphate concentration inStreptomyces aureofaciens.Folia Microbiol.14, 208–210 (1969).

    Google Scholar 

  • Jost J.L., Kominek L.A., Hyatt G.S., Wang H.Y.: Cycloheximide: properties, biosynthesis and fermentation, pp. 531–550, inBiotechnology of Industrial Antibiotics, (E.J. Vandamme, Ed.). Marcel Dekker, New York-Basel 1984.

    Google Scholar 

  • Khokhlov A.S.:Microbial autoregulators. Harwood Acad. Publ., Chur (Switzerland) 1991.

    Google Scholar 

  • Kominek L.A.: Cycloheximide production byStreptomyces griseus: Control mechanisms of cycloheximide biosynthesis.Antimicrob. Agents. Chemother.7, 856–860 (1975).

    CAS  Google Scholar 

  • Krumphanzl V., Sikyta B., Vaněk Z.: Overproduction of Microbial Products.FEMS Symposium No. 13. Academic Press 1982.

  • Lebrihi A., Germain P., Lefebvre G.: Phosphate repression of cephamycin and clavulanic acid production byStreptomyces clavuligerus.Appl. Microbiol. Biotechnol.26, 130–135 (1987).

    Article  CAS  Google Scholar 

  • Lebrihi A., Lefebvre G., Germain P.: Carbon catabolite regulation of cephamycin C and expandase biosynthesis inStreptomyces clavuligerus.Appl. Microbiol. Biotechnol.28, 44–51 (1988).

    CAS  Google Scholar 

  • Lein J.: The Panlabs penicillin strain improvement program p. 105–139 inOverproduction of Microbial Metabolites Strain Improvement and Process Control Strategies. (Z. Vaněk, Z. Hošt’álek, Eds). Butteworths, London 1986.

    Google Scholar 

  • Liras J., Villanueva J.R., Martín J.F. Sequential expression of macromolecule biosynthesis and candicidin formation inStreptomyces griseus.J. Gen. Microbiol.102, 269–277 (1977).

    PubMed  CAS  Google Scholar 

  • Lübbe C., Wolfe S, Demain A.L.: Repression and inhibition of cephalosporin synthetase inStreptomyces clavuligerus by inorganic phosphate.Arch. Microbiol.140, 317–320 (1985).

    Article  PubMed  Google Scholar 

  • Madry N., Pape H.: Phosphateeffekt auf die Production von Tylosin und einige Enzyme der Tylosin Biosynthese inStreptomyces T59-253.Hoppe-Seyler’s Z. Physiol. Chem.361, 299–301 (1980).

    Google Scholar 

  • Magasanik B.: Catabolite repression.Cold Spring Harbor Symposium Quant. Biol.,26, 249–256 (1961).

    CAS  Google Scholar 

  • Martín J.F.: Control of antibiotic synthesis by phosphate.Adv. Biochem. Eng.,6, 105–127 (1977).

    Google Scholar 

  • Martín J.F.: Molecular mechanisms for the control by phosphate of the biosynthesis of antibiotics and other secondary metabolities, pp. 213–237 inRegulation of Secondary Metabolism in Actinomycetes, (S. Shapiro, Ed.), CRC Press, Boca Raton 1989.

    Google Scholar 

  • Martín J.F., Demain A.L.: Control of antibiotic biosynthesis.Microbiol. Rev.44, 230–251 (1980).

    PubMed  Google Scholar 

  • Miyake K., Kuzuyama T., Horinouchi S., Beppu T.: The A-factor-binding protein ofStreptomyces griseus negatively controls streptomycin production and sporulation.J. Bacteriol.172, 3003–3008 (1990).

    PubMed  CAS  Google Scholar 

  • Náprstek J., Janeček J., Dobrová Z.: Cyclic 3′, 5′-adenosine monophosphate and catabolite repression inEscherichia coli.Biochem. Biophys. Res. Commun.64, 845–850 (1975).

    Article  PubMed  Google Scholar 

  • Novák J., Andêra L., Vanêk, Z.: The role of alanine dehydrogenase in ammonium assimilation inStreptomyces avermitilis. 6th German (VAAM) Workshop on the Biology and Biotechnology of Streptomycetes, Wuppertal 1990a.

  • Novák, J., Jechová V., Čurdová E., Cimburková E., Hájek P., Vanêk Z. Metabolism of nitrogen inStreptomyces avermitilis and its relationship to the production of avermectins. Abstract Book p. 183.6th Internat. Symp. GIM 90, Strassbourg 1990.

  • Omura S., Tanaka Y.: Control of ammonium level in antibiotic fermentation, pp 367–380, inBiological, Biochemical and Biomedical Aspects of Actinomycetes, (L. Ortiz-Ortiz, L.F. Nojalil, V. Yakoleff, Eds.). Academic Press, Orlando 1984.

    Google Scholar 

  • Omura S., Tanaka Y.: Biosynthesis of tylosin and its regulation by ammonium and phosphate, pp. 305–332 inRegulation of Secondary Metabolite Formation, (H. Kleinkauf, H. v. Döhren, H. Dornauer, G. Nesemann, Eds.). VCH Verlagsgesellschaft, Weinheim 1986.

    Google Scholar 

  • Paress P.S., Streicher S.L.: Glutamine synthetase ofStreptomyces cattleya: purification and regulation of synthesis.J. Gen. Microbiol.131, 1903–1910 (1985).

    PubMed  CAS  Google Scholar 

  • Pastan J., Adhya S.: Cyclic adenosine 5′-monophosphate inEscherichia coli.Bacteriol. Rev.40, 527–551 (1976).

    PubMed  CAS  Google Scholar 

  • Payne G.F., Wang H.Y.: The effect of feedback regulation andin situ product removal on the conversion of sugar to cycloheximide byStreptomyces griseus.Arch. Microbiol.151, 331–335 (1989).

    Article  CAS  Google Scholar 

  • Peschke U., Schmidt H., Zhang H.Z., Piepersberg W. Organization of the complete gene cluster for lincomycin production in an overproducing strain ofStreptomyces lincolnensis. EMBL/GenBank/DDBJ Databases 1994.

  • Pospíšil S., Sedmera P., Havránek M., Krumphanzl V., Vaněk Z.: Biosynthesis monensis A and B.J. Antibiot.36 617–619 (1983).

    PubMed  Google Scholar 

  • Shapiro S., Vining L.C.: Nitrogen metabolism and chloramphenicol production inStreptomyces venezuelae.Can J. Microbiol.29, 1706–1714 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Shapiro S., Vining L.C., Laycock M., Innes A.G., Walter J.A.: Pathway of ammonium assimilation inStreptomyces venezuelae examined by amino acid analyses and15N nuclear magnetic resonance spectroscopy.Can. J. Microbiol.31, 629–634 (1985).

    PubMed  CAS  Google Scholar 

  • Spížek J., Málek I., Suchý J., Vondráček M., Vaněk Z.: Metabolites ofStreptomyces noursei. V. Relation of the production of cyloheximide and actiphenol to the production of fungicidin.Folia Microbiol.10, 263–266 (1965).

    Google Scholar 

  • Spížek J., Vaněk Z., Tichý P.: Genetic studies on lincomycin production inStreptomyces lincolnensis. Proc. 6th Europ. Congr. Biotechnology, pp. 757–760 (L. Alberghina, L. Frontali, P. Sensi, Eds). Elsevier Science B.V. 1994.

  • Stein D., Cohen S.N.: A cloned regulatory gene ofStreptomyces lividans can suppress the pigment deficiency phenotype of different developmental mutants.J. Bacteriol.171, 2258–2261, (1989).

    PubMed  CAS  Google Scholar 

  • Vaněk Z., Vondráček M.: Biogenesis of cycloheximide and of related compounds, pp. 982–991 inAntimicrobial Agents and Chemotherapy (G.L. Hobby, Ed.). Am. Soc. for Microbiology, 1965.

  • Vaněk Z., Hošťálek Z., Blumauerová M., Mikulík K., Podojil M., Běhal V., Jechová V.: The biosynthesis of tetracycline.Pure Appl. Chem.34, 463–486 (1973).

    PubMed  Google Scholar 

  • Vaněk Z., Pospíšil S., Sedmera P. Tichý P., Řezanka T., Krumphanzl V.: Optimization of streptomycete strains producing polyether and macrolide antibiotics.Biochem. Soc. Transact.12, 587–589 (1984).

    Google Scholar 

  • Vaněk Z., Blumauerová M.: Physiology and pathophysiology of secondary metabolite production, pp. 3–25 inOverproduction of Microbial Metabolites. Strain Improvement and Process Control Strategies, (Z. Vaněk, Z. Hoštálek, Eds.). Butterworths, London 1986.

    Google Scholar 

  • Vaněk Z., Novák J., Jechová V.: Primary and secondary metabolism, pp. 389–394, inBiotechnology of Actinomycetes 88, (Y. Okami, T. Beppu, H. Ogawara, Eds), Japan Sci. Soc. Press, Tokyo 1988b.

    Google Scholar 

  • Vaněk Z., Hošťálek Z., Spížek J.: Overproduction of Microbial Products—Facts and Ideas.Biotechnol. Adv.8, 1–27 (1990).

    Article  PubMed  Google Scholar 

  • Wittler R., Schügerl K.: Interrelation between penicillin productivity and growth rate.Appl. Microbiol. Biotechnol.21, 348–355 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the 70th birthday of Dr. Z. Vanêk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spížek, J., Tichý, P. Some aspects of overproduction of secondary metabolites. Folia Microbiol 40, 43–50 (1995). https://doi.org/10.1007/BF02816527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816527

Keywords

Navigation