Skip to main content
Log in

Auto-aggregation and Co-aggregation ability in bifidobacteria and clostridia

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A total of 142 human and 88 calf bifidobacteria were isolated and identified; ≈12 % of all isolated strains exhibited auto-aggregation (Agg) phenotype (Agg+). Properties considered to be predicting for their adhesion to intestine, i.e. auto-aggregation, and hydrophobicity were determined by xylene extraction in 18 human and 8 calf origin bifidobacteria. Co-aggregation of 8 human bifidobacteria with 8 clostridia was also evaluated. Agg varied between 16.3 and 96.4 %, hydrophobicity values ranged from 0 to 82.8 %. The strongest Agg and hydrophobicity were observed in B. bifidum and B. merycicum isolates. However, there were no statistically significant correlations between these two properties. Variability in the percentage of Agg and hydrophobicity was observed after cultivation of bifidobacteria on different carbon sources. All bifidobacteria showed co-aggregation ability with clostridia tested but there were remarkable differences depending on specific combinations of strains. The bifidobacterial strains with the highest ability to co-aggregate with clostridia were B. bifidum I4 and B. longum I10 isolated from infants; these strains gave also high values of Agg. Agg properties together with co-aggregation ability with potential pathogen can be used for preliminary selection of probiotic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe F., Ishibashi N., Shimamura S.: Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J.Dairy Sci.78, 2838–2846 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Biavati B., Mattarelli P.: Bifidobacterium ruminantium sp.nov. and Bifidobacterium merycicum sp.nov. from the rumens of cattle. Internat.J.Syst.Bacteriol.41, 163–168 (1991).

    Article  CAS  Google Scholar 

  • Bibiloni R., Fernando P., de Antoni G.L.: Will a high adhering capacity in a probiotic strain quarantee exclusion of pathogens from intestinal epithelia. Anaerobe5, 519–524 (1999).

    Article  Google Scholar 

  • Bolduc M.P., Raymond Y., Fustier P., Champagne C.P., Vuillemard J.C.: Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk. Internat.Dairy J.16, 1038–1048 (2006).

    Article  CAS  Google Scholar 

  • Bujňáková D., Vlková E., Rada V., Kmeť V.: Aggregation of lactobacilli and bifidobacteria with Escherichia coli O157. Folia Microbiol.49, 143–146 (2004).

    Article  Google Scholar 

  • Candela M., Seibold G., Vitali B., Lachenmaier S., Eikmanns B.J., Brigidi P.: Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res.Microbiol.156, 887–895 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Čepeljnik T., Lah B., Narat M., Marinšek-Logar R.: Adaptation of adhesion test using Caco-2 cells for anaerobic bacterium Pseudobutyrivibrio xylanivorans, a probiotic candidate. Folia Microbiol.52, 367–374 (2007).

    Article  Google Scholar 

  • Collado M.C., Meriluoto J., Salminen S.: Adhesion and aggregation properties of probiotic and pathogen strains. Eur.Food Res. Technol., in press (2007a).

  • Collado M.C., Surono I., Meriluoto J., Salminen S.: Indigenous dadih lactic acid bacteria: cell-surface properties and interactions with pathogens. J.Food Sci.72, M89–M93 (2007b).

    Article  PubMed  CAS  Google Scholar 

  • Del Re B., Sgorbati B., Miglioli M., Palenzola D.: Adhesion, auto-aggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett.Appl.Microbiol.31, 438–442 (2000).

    Article  PubMed  Google Scholar 

  • Fajdiga S., Koninkx J.F.J.G., Tooten P.C.J., Marinšek-Logar R.: Interference of Salmonella enteritidis and Lactobacillus spp. with IL-8 levels and transepithelial electrical resistance of enterocyte-like Caco-2 cells. Folia Microbiol.51, 268–272 (2006).

    Article  CAS  Google Scholar 

  • Fanaro S., Chierici R., Guerrini P., Vigi V.: Intestinal microflora in early infancy: composition and development. Acta Paediatr.441 (Suppl.), 48–55 (2003).

    Google Scholar 

  • Fasoli S., Marzotto M., Rizzotti L., Rossi F., Dellaglio F., Torriani S.: Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Internat.J.Food Microbiol.82, 59–70 (2003)

    Article  CAS  Google Scholar 

  • Gilliland S.E., Reilly S.S., Kim G.B., Kim H.S.: Viability during storage of selected probiotic lactobacilli and bifidobacteria in yogurt-like product. J.Food Sci.67, 3091–3095 (2002).

    Article  CAS  Google Scholar 

  • Gómez-Zavaglia A., Kociubinski G., Perez P., Disalvo E., de Antoni G.: Effect of bile on the lipid composition and surface properties of bifidobacteria. J.Appl.Microbiol.93, 794–799 (2002).

    Article  PubMed  Google Scholar 

  • Gueimonde M., Noriega L., Margolles A., de los Reyes-Gavilan C.G., Salminen S.: Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. Internat.J.Food Microbiol.101, 341–346 (2005).

    Article  CAS  Google Scholar 

  • Horošová K., Bujňáková D., Kmeť V.: Effect of lactobacilli on E. coli adhesion to Caco-2 cells in vitro. Folia Microbiol.51, 281–282 (2006).

    Article  Google Scholar 

  • Kirjavainen P.V., Ouwehand A.C., Isolauri E., Salminen S.J.: The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol.Lett.167, 185–189 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Leahy S.C., Higgins D.G., Fitzgerald G.F., van Sinderen D.: Getting better with bifidobacteria. J.Appl.Microbiol.98, 1303–1315 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Matsuki T., Watanabe K., Tanaka R.: Genus-and species-specific PCR primers for the detection and identification of bifidobacteria. Curr.Issues Intest.Microbiol.4, 61–69 (2003).

    PubMed  CAS  Google Scholar 

  • Mättö J., Malinen E., Suihko M.L., Alander M., Palva A., Saarela M.: Genetic heterogeneity and functional properties of intestinal bifidobacteria. J.Appl.Microbiol.97, 459–470 (2004).

    Article  PubMed  CAS  Google Scholar 

  • O’sullivan D.J.: Evolutionary adaptation responses in bifidobacteria: comparative and functional genomics. Proc. 2nd Internat. Symp. on Propionibacteria and Bifidobacteria, Wadahal (Norway) 2007.

  • Orban J.I., Patterson J.A.: Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J.Microbiol.Meth.40, 221–224 (2002).

    Article  Google Scholar 

  • Ouwehand A.C., Niemi P., Salminen S.J.: The normal fecal microflora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol.Lett.177, 35–38 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ouwehand A.C., Tölkkö S., Salminen S.: The effect of digestive enzymes on adhesion of probiotic bacteria in vitro. J.Food Sci.66, 856–859 (2001).

    Article  CAS  Google Scholar 

  • Ouwehand A.C., Isolauri E., Salminen S.J.: The role of the intestinal microflora for the development of the immune system in early childhood. Eur.J.Nutr.41, 132–137 (2002).

    Article  CAS  Google Scholar 

  • Rada V., Petr J.: A new selective medium for the isolation of glucose nonfermenting bifidobacteria. J.Microbiol.Meth.43, 127–132 (2000).

    Article  CAS  Google Scholar 

  • Riedel C.U., Foata F., Goldstein D.R., Blum S., Eikmanns B.J.: Interaction of bifidobacteria with Caco-2 cells — adhesion and impact on expression profiles. Internat.J.Food Microbiol.110, 62–68 (2006).

    Article  CAS  Google Scholar 

  • Sheil B., Shanahan F., O’Mahony L.: Probiotic effects on inflammatory bowel disease. J.Nutr.137, 819S–824S (2007).

    PubMed  CAS  Google Scholar 

  • Trebichavský I., Šplíchal I.: Probiotics manipulate host cytokine response and induce antimicrobial peptides. Folia Microbiol.51, 507–510 (2006).

    Article  Google Scholar 

  • Vlková E., Nevoral J., Jenčíková B., Kopečný J., Godefrooij J., Trojanová I., Rada V.: Detection of infant fecal bifidobacteria by enzymatic methods. J.Microbiol.Meth.60, 365–373 (2005).

    Article  CAS  Google Scholar 

  • Vlková E., Trojanová I., Rada V.: Distribution of bifidobacteria in gastrointestinal tract of calves. Folia Microbiol.51, 325–328 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vlková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlková, E., Rada, V., Šmehilová, M. et al. Auto-aggregation and Co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol 53, 263–269 (2008). https://doi.org/10.1007/s12223-008-0040-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0040-z

Keywords

Navigation