Skip to main content
Log in

LbL Fabricated PU/PSS/{201}TiO2 Multilayer Thin Films with Exposed High-Index {201} Facet for Environmental Applications

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2), as the most widely used semiconductor photocatalyst, still suffers from low quantum efficiency, easy agglomeration, and difficult separation, which limits the practical application. In this study, high-index {201}TiO2 was prepared with a dandelion-like lamellar structure through the control of hydrofluoric acid (HF), and then, the (PU/PSS/TiO2), (PU/PSS/{201}TiO2) hybrid films were prepared by layer-by-layer (LbL) self-assembly technique. Polyurethane (PU) and sodium polystyrene sulfonate (PSS) were used as a substrate for the immobilization of TiO2. The photocatalytic activity and reusability of the hybrid films were investigated with experiments of photocatalytic degradation of methyl blue (MB). These results indicate that the (PU/PSS/{201}TiO2)n hybrid films had superior photocatalytic degradation performance relative to (PU/PSS/TiO2)n and TiO2, and the photocatalytic activity of the film could be repeatedly used for up to six times reuse. In addition, the corresponding mechanism of enhanced photocatalytic activity was proposed on the basis of the investigated results from reactive species scavenging of (PU/PSS/{201}TiO2)10. The active species h+ played the most important role in the photocatalytic reaction. This work may develop one kind of high-index {201}TiO2 thin by LbL self-assembly, making the photocatalyst a promising candidate in wastewater treatment application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. P.C.S. Nagajyothi, V.P. Vattikuti, K.C. Devarayapalli, K. Yoo, J. Shim, T.V.M. Sreekanth, Crit. Rev. Environ. Sci. Technol. 50, 2617 (2020)

    Article  CAS  Google Scholar 

  2. M.J.M. Arlos, M. Hatat-Fraile, R. Liang, L.M. Bragg, N.Y. Zhou, S.A. Andrews, M.R. Servos, Water Res. 101, 351 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. F. Lu, A. Didier, Coord. Chem. Rev. 408, 213180 (2020)

    Article  CAS  Google Scholar 

  4. E.T. Soares, M.A. Lansarin, C.C. Moro, J. Braz. Chem. Eng. 24, 29 (2007)

    Article  CAS  Google Scholar 

  5. D. Yu, R. Cai, Z. Liu, Spectrochim. Acta, Part A 60, 1617 (2004)

    Article  Google Scholar 

  6. C. Karunakaran, S. Senthilvelan, Electrochem. Commun. 8, 95 (2006)

    Article  CAS  Google Scholar 

  7. C.L.T. Martnez, R. Kho, O.I. Mian, R.K.J. Mehra, ColloidInterface Sci. 240, 525 (2001)

    Google Scholar 

  8. W.G. Tu, W.L. Guo, J.Q. Hu, H.C. He, H.J. Li, Z.S. Li, W.J. Luo, Y. Zhou, Z.G. Zou, Mater. Today. 33, 38 (2020)

    Article  Google Scholar 

  9. Z. Zhou, Y. Yu, Z. Ding, M. Zuo, C. Jing, Eur. J. Inorg. Chem. 6, 683 (2018)

    Article  Google Scholar 

  10. Y.Q. Yu, Z. Zhou, Z.X. Ding, M.M. Zuo, J.M. Cheng, C.Y. Jing, J. Hazard. Mater. 377, 267 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. J.Y. Song, L. Yan, J.M. Duan, C.Y. Jing, J. Colloid Interface Sci. 36, 581 (2017)

    Google Scholar 

  12. Y. Yang, Q.Z. Deng, Y.L. Zhang, Chem. Eng. J. 360, 1247 (2019)

    Article  CAS  Google Scholar 

  13. R. Katal, S. Masudy-Panah, M. Tanhaei, M.H.D. Abadi Farahani, J. Hu, Chem. Eng. J. 384, 123384 (2020)

    Article  CAS  Google Scholar 

  14. F. Dingenen, N. Blommaerts, M. Van Hal, R. Borah, D. Arenas-Esteban, S. Lenaerts, S. Bals, S.W. Verbruggen, Nanomaterials 11, 2624 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L.L. Lin, Q.J. Wu, X. Gong, Y. Zhang, M.L. Alda, J. Anal, Methods. Chem. 2017, 9629532 (2017)

    Google Scholar 

  16. G. Decher, J.D. Hong, Markromol. Chem. Macromol. Symp. 46, 321 (1991)

    Article  CAS  Google Scholar 

  17. G. Decher, J.D. Hong, J. Schmitt, Thin Solid Films 210, 831 (1992)

    Article  Google Scholar 

  18. S. Shen, N. Wang, J. Jia, D. Song, T. Zuo, K. Liu, Q. Che, J. Mol. Liq. 350, 118536 (2022)

    Article  CAS  Google Scholar 

  19. Q. Che, F. Feng, L. Liu, H. Fan, Z. Li, Fiber Polym. 19, 1585 (2018)

    Article  CAS  Google Scholar 

  20. Y.J. Liu, J.Q. Xue, Y.L. Duan, L.S. Qiang, J. Ma, Fiber polym. 20, 1833 (2019)

    Article  CAS  Google Scholar 

  21. S. Srivastava, N.A. Kotov, Acc. Chem. Res. 41, 1831 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J.G. Kim, S.J. Yoo, C. Uher, N.A. Kotov, Nature 500, 59 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. B. Ding, J. Kim, E. Kimura, S. Shiratori, Nanotechnology 15, 913 (2004)

    Article  CAS  Google Scholar 

  24. T. Kim, B. Sohn, Appl. Surf. Sci. 201, 109 (2002)

    Article  CAS  Google Scholar 

  25. J. Rongé, J. Bets, S. Pattanaik, T. Bosserez, S. Borellini, S. Sree, G. Decher, J.A. Martens, Catal. Today 246, 28 (2015)

    Article  Google Scholar 

  26. J. Kim, S. Shiratori, Jpn. J. Appl. Phys. 44, 7588 (2005)

    Article  CAS  Google Scholar 

  27. A. Tkaczyk, K. Mitrowska, Sci. Total Environ. 717, 137222 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. R. Khan, H. Ali Löytty, A. Tukiainen, N.V. Tkachenko, Phys. Chem. Chem. Phys. 23, 17672 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. S.M. Tichapondwa, J.P. Newman, O. Kubheka, Phys. Chem. Earth. 118–119, 102900 (2020)

    Article  Google Scholar 

  30. Y. Yu, J. Du, C. Jing, J. Mater. Chem. C. 7, 14239 (2019)

    Article  CAS  Google Scholar 

  31. R.A. Hackler, G. Kang, G.C. Schatz, P.-C. Stair, R.-P. Van Duyne, J. Am. Chem. Soc. 141, 414 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. P. Paul, Q. Ming, C. Meghan, J. Zhu, C. Kevin, K. Eugene, A.K. Kaushik, Y. Qi, H.S. Kim, S.T. Noh, E.M. Arruda, A.M. Waas, N.A. Kotov, Langmuir 25, 14093 (2009)

    Article  Google Scholar 

  33. D.N. Priya, J.M. Modak, A.M. Raichur, ACS. Appl. Mater. Inter. 1, 2684 (2009)

    Article  CAS  Google Scholar 

  34. J. Song, L. Yan, J. Duan, C. Jing, J. Colloid. Interf. Sci. 496, 522 (2017)

    Article  CAS  Google Scholar 

  35. X. Kong, P. Gao, R. Jiang, J. Feng, P. Yang, S. Gai, Y. Chen, Q. Chi, F. Xu, W. Ye, Appl. Catal. A-Gen. 590, 117341 (2020)

    Article  CAS  Google Scholar 

  36. Q. Shang, T. Yu, X. Tan, Z. Zhang, Y. Zou, L. Zhang, Y. Zhang, S. Wang, J. Solid State Electrochem. 20, 123 (2016)

    Article  CAS  Google Scholar 

  37. Q. Qin, Q. Shi, J. Meng, J. Wan, Z. Hu, ChemistrySelect 3, 11414 (2018)

    Article  CAS  Google Scholar 

  38. P. Niu, J. Hao, Langmuir 27, 13590 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. S. Owusu-Nkwantabisah, C.P. Tripp, J. Colloid Interf. Sci. 541, 322 (2019)

    Article  CAS  Google Scholar 

  40. B. Kim, I. Yang, J. Jung, T.S. Lee, B. Yeom, Appl. Surf. Sci. 490, 38 (2019)

    Article  CAS  Google Scholar 

  41. W. Guo, L.-Z. Wu, N.-X. Meng, Y.-R. Chen, Z.-P. Ma, X. Zhou, W. Zhang, R.-Q. Shen, Y.H. Ye, Chem. Eng. J. 360, 1071 (2019)

    Article  CAS  Google Scholar 

  42. H. Cheng, C. Hung, I. Yu, Z. Yang, Catalysts 8, 440 (2018)

    Article  Google Scholar 

  43. A. Mardani, Z. Mohamadnia, F. Kazemi, J. Appl. Polym. Sci. 137, e49113 (2020)

    Article  Google Scholar 

  44. Z.M. Wang, X.Y. Peng, C.Y. Huang, X. Chen, W. Dai, X. Fu, Appl. Catal. B-Environ. 219, 379 (2017)

    Article  CAS  Google Scholar 

  45. L. Yan, C. Jing, J. Phys. Chem. Lett. 11, 9485 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. L.S. Matos, R.C. Amaral, N.Y. Murakami, Chem Select. 4, 265 (2019)

    CAS  Google Scholar 

  47. J. Kim, S. Fujita, S. Shiratori, Thin Solid Films 499, 83 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (No. 51874227), the Shaanxi Provincial Research Foundation for Basic Research, China (No. 2019JM-550, and No. 2018ZDXM-GY-171), National College Students' innovation and entrepreneurship training program (No. 202110703004), and the International Cooperative Project of Shaanxi Province (No. 2022KW-33).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Ma or Nijun Xu.

Ethics declarations

Conflict of Interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest directly or indirectly in connection with our work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Ma, J., Dai, J. et al. LbL Fabricated PU/PSS/{201}TiO2 Multilayer Thin Films with Exposed High-Index {201} Facet for Environmental Applications. Fibers Polym 24, 811–821 (2023). https://doi.org/10.1007/s12221-023-00048-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00048-4

Keywords

Navigation