Skip to main content
Log in

Design, Synthesis, and Antibacterial Activity of Spiropyrimidinone Derivatives Incorporated Azo Sulfonamide Chromophore for Polyester Printing Application

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We designed and developed a novel series of bioactive disperse dyes by conjugation of spirocyclic 2-thiopyrimidine scaffold with aryl or sulfa drug moieties in the same construct through azo linker to take advantage of the bioactive character of both motifs. The target molecules were simply approached on a gram scale via the diazocoupling of spirocyclic 2-thiouracil 1 with aryl diazonium chloride derivatives to afford the heterocyclic azo-disperse dyes 4a–e in excellent yield. These azo dyes were effectively utilized to make pastes for silkscreen printing of polyester fabrics. The color characteristics of the dyes and their fastness properties including washing, rubbing, perspiration, sublimation, and light fastness were also investigated. The antimicrobial activity of the produced dyes 4a–e was evaluated against some Gram-positive and Gram-negative bacteria, and the results revealed that 4d was more active than the standard drug cefoperazone against the Gram-positive bacteria S. aureus. The antibacterial efficacy of the treated fabrics has also been investigated revealing that the dyed fabric 4b was found to have a potent inhibition on B. cereus (93 %), and against E. coli with a reduction of (90%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Malik and S. K. Zadafiya, Chem. Sin., 1, 15 (2010).

    CAS  Google Scholar 

  2. G. A. M. Nawwar, K. S. A. Zaher, E. Shaban, and N. M. A. El-Ebiary, Fiber. Polym., 21, 1293 (2020).

    Article  CAS  Google Scholar 

  3. E. Shaban, S. H. Nassar, S. Shabban, and H. E. Gaffer, Egypt. J. Chem., 60, 73 (2017).

    Article  Google Scholar 

  4. K. M. Hassan, S. A. S. ElKhabiery, G. M. ElHaddad, S. H. Shokair, and I. E. ElSayed, J. Iran. Chem. Soc., 19, 147 (2022).

    Article  CAS  Google Scholar 

  5. A. Gičević, L. Hindija, and A. Karačić, “International Conference on Medical and Biological Engineering”, pp.581–587, doi: https://doi.org/10.1007/978-3-030-17971-7_88, 2019.

  6. J. Mokhtari, A. Shams-Nateri, and P. Ferdosi, Fiber. Polym., 15, 1369 (2014).

    Article  CAS  Google Scholar 

  7. R. Bentley, J. Ind. Microbiol. Biotechnol., 36, 775 (2009).

    Article  CAS  Google Scholar 

  8. Y. Guo, H. Lee, and H. Jeong, Prog. Mol. Biol. Transl. Sci., 171, 61 (2020).

    Article  CAS  Google Scholar 

  9. G. Plosker and K. Croom, Drugs, 65, 2591 (2005).

    Article  Google Scholar 

  10. N. Sala, G. Prats, M. Villabona, I. Gallardo, T. Hamdan, R. O. Al-Kaysi, J. Hernando, and G. Guirado, Dyes Pigm., 153, 160 (2018).

    Article  CAS  Google Scholar 

  11. P. Cui, X. Li, M. Zhu, B. Wang, J. Liu, and H. Chen, Eur. J. Med. Chem., 127, 159 (2017).

    Article  CAS  Google Scholar 

  12. A. S. Chaudhary, J. Jin, W. Chen, P. C. Tai, and B. Wang, Bioorg. Med. Chem., 23, 105 (2015).

    Article  CAS  Google Scholar 

  13. M. S. Mohamed, S. M. Awad, and N. M. Ahmed, Acta Pharm., 61, 171 (2011).

    Article  CAS  Google Scholar 

  14. K. Cheng, Q.-Z. Zheng, Y. Qian, L. Shi, J. Zhao, and H.-L. Zhu, Bioorg. Med. Chem., 17, 7861 (2009).

    Article  CAS  Google Scholar 

  15. A.-A. S. El-Etrawy and F. F. Sherbiny, J. Mol. Struct., 1232, 129993 (2021).

    Article  CAS  Google Scholar 

  16. A. S. Chaudhary, W. Chen, J. Jin, P. C. Tai, and B. Wang, Future Med. Chem., 7, 989 (2015).

    Article  CAS  Google Scholar 

  17. R. M. Abd El-Aal and M. Younis, Dyes Pigm., 60, 205 (2004).

    Article  CAS  Google Scholar 

  18. M. Ma, Y. Sun, and G. Sun, Dyes Pigm., 58, 27 (2003).

    Article  CAS  Google Scholar 

  19. P. Sah, J. Oneto, and H. Sah, Arzneimittel-Forschung, 10, 533 (1960).

    CAS  PubMed  Google Scholar 

  20. E. M. Hussein, Monatsh. Chem., 144, 1691 (2013).

    Article  CAS  Google Scholar 

  21. TS EN ISO, “Textiles-Tests for Colour Fastness-Part C06: Color Fastness to Domestic and Commercial Laundering (TS EN ISO 105-C06)”, 2012.

  22. ISO 105-E04:2008, “Textiles — Tests For Colour Fastness — Part E04: Colour Fastness to Perspiration”, 2008.

  23. U. Nimkar and R. Bhajekar, Colorage, 43, 135 (2006).

    Google Scholar 

  24. ISO 105-B02:2013, “Textiles — Tests for Colour Fastness — Part B02: Colour Fastness to Artificial Light: Xenon Arc Fading Lamp Test”, 2013.

  25. ISO 105-X12:2001, “Textiles — Tests for Colour Fastness — Part X12: Color Fastness to Rubbing”, 2001.

  26. B.S 1006:1990, “Standard Methods for the Determination of the Colour Fastness of Textiles and Leather”, 5th eds., 1991.

  27. J. Tamokou, A. Mbaveng, and V. Kuete in “Medicinal Spices and Vegetables from Africa” (V. Kuete Ed.), p.207, Elsevier, 2017.

  28. J. M. Jabar, A. I. Ogunmokun, and T. A. A. Taleat, Fash. Text., 7, 1 (2020).

    Article  Google Scholar 

  29. M. R. Luo, “Encyclopedia of Color Science and Technology”, Springer, New York, NY, 2016.

    Book  Google Scholar 

  30. M. Sadeghi-Kiakhani and S. Safapour, Color. Technol., 131, 142 (2015).

    Article  CAS  Google Scholar 

  31. S. M. Al-Mousawi, M. A. El-Apasery, and M. H. Elnagdi, Molecules, 18, 11033 (2013).

    Article  CAS  Google Scholar 

  32. Y. M. Elkholy, M. H. Helal, and A. W. Erian, Pigment Resin Technol., 30, 168 (2001).

    Article  CAS  Google Scholar 

  33. P. J. Shah, H. S. Patel, and B. P. Patel, J. Saudi Chem. Soc., 17, 307 (2013).

    Article  CAS  Google Scholar 

  34. T. D. Brock, M. T. Madigan, J. M. Martinko, and J. Parker, “Brock Biology of Microorganisms”, Pearson Prentice-Hall, Upper Saddle River, NJ, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif S. Ragab or Elkhabiry Shaban.

Ethics declarations

The authors declare that there is no conflict of interest.

Supporting information

12221_2022_4032_MOESM1_ESM.pdf

Design, Synthesis, and Antibacterial activity of Spiropyrimidinone Derivatives Incorporated Azo Sulfonamide Chromophore for Polyester Printing Application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragab, S.S., Sweed, A.M.K., Hamza, Z.K. et al. Design, Synthesis, and Antibacterial Activity of Spiropyrimidinone Derivatives Incorporated Azo Sulfonamide Chromophore for Polyester Printing Application. Fibers Polym 23, 2114–2122 (2022). https://doi.org/10.1007/s12221-022-4032-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4032-4

Keywords

Navigation