Skip to main content
Log in

The Preliminary Simulated Effect of Stretching and Blowing Combination on the Wall Thickness Distribution of 1.5Lt PET Bottle During ISBM Process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The combination of stretching and blowing in ISBM (Injection Stretch Blow Molding) is the formation mechanism of plastic hollow beverage containers. This study curries the numerical effort of tracking the role of combination of stretching and blowing on the wall thickness distribution of 1.5Lt Polyethylene Terephthalate (PET) bottle. The numerical schedule of this study consists of five test cases where the engagement of pre-blowing pressure with stretching takes place at 0–100 % of the stretching rod route. It was found that with the delay of pre-blowing pressure in relation to the effect of stretching, more material is accumulated at the lower region of the final product. The most optimum cases for thickness uniformity is the case where the pre-blowing pressure activation commence at the 75 % of the stretching rod route and at the case where the pre-blowing is activated after stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://www.mordorintelligence.com/industry-reports/global-plastic-bottles-containers-market-industry (Accessed May 18, 2020).

  2. A. Lontos and A. Gregoriou, Procedia CIRP, 81, 1307 (2019).

    Article  Google Scholar 

  3. A. Lontos and A. Gregoriou, MATEC Web Conf., 188, 01021 (2018).

    Article  Google Scholar 

  4. M. Bordival, F. Schmidt, Y. L. Maoult, and V. Velay, Polym. Eng. Sci., 49, 783 (2008).

    Article  Google Scholar 

  5. F. Daver and B. Demirel, J. Mater. Process. Technol., 212, 2400 (2012).

    Article  CAS  Google Scholar 

  6. B. Demirel and F. Daver, J. Appl. Polym., 126, 1300 (2012).

    Article  CAS  Google Scholar 

  7. H. Haddad and D. Erbulut, Australian J. Mech. Eng., 7, 69 (2009).

    Article  Google Scholar 

  8. C. W. Tan, G. H. Menary, Y. Salomeia, C. G. Armstrong, M. Picard, N. Billon, E. M. A. H. Jones, P. J. Martin, and K. Maheshwari, Int. J. Mater. Form., 1, 799 (2008).

    Article  Google Scholar 

  9. Z. J. Yang, E. Harkin-Jones, G. H. Menary, and C. G. Armstrong, J. Mater. Process. Technol., 153–154, 20 (2004).

    Article  Google Scholar 

  10. J. Zimmer and M. Stommel, “Method for the Evaluation of Stretch Blow Molding Simulations with Free Blow Trials”, Vol. 48, 7th EEIGM International Conference on Advanced Materials Research, 2004.

  11. G. Menary, C. Tan, E. Harkin-Jones, C. Armstrong, and P. Martin, Polym. Eng. Sci., 52, 671 (2011).

    Article  Google Scholar 

  12. C. P. Buckley and D. C. Jones, Polymer, 36, 3301 (1995).

    Article  CAS  Google Scholar 

  13. P. Chandran and S. Jabarin, Adv. Polym. Technol., 12, 133 (1993).

    Article  CAS  Google Scholar 

  14. C. Bonnebat, G. Roullet, and A. J. d. Vries, Polym. Eng. Sci., 21, 189 (1981).

    Article  CAS  Google Scholar 

  15. J. Liu, H. X. Huang, and Z. S. Yin, “Experiment and Simulation of PET Stretch Blow Molding Process”, pp.925–931, ASME 2005 International Mechanical Engineering Congress and Exposition, 2005.

  16. F. Thibault, A. Malo, B. Lanctot, and R. Diraddo, Polym. Eng. Sci., 47, 289 (2007).

    Article  CAS  Google Scholar 

  17. J. Nixon, G. Menary, and S. Yan, Int. J. Mater. Forming, 10, 793 (2016).

    Article  Google Scholar 

  18. F. M. Schmidt, J. F. Agassant, and M. Bellet, Polym. Eng. Sci., 38, 1399 (2004).

    Article  Google Scholar 

  19. L. Chevalier, C. Linhone, and G. Regnier, Plast. Rubber Compos., 28, 393 (2013).

    Article  Google Scholar 

  20. N. Billon, M. Picard, and E. Gorlier, Int. J. Mater. Forming, 7, 369 (2013).

    Article  Google Scholar 

  21. N. G. McCrum, C. P. Buckley, and C. Bucknall, “Principles of Polymer Engineering”, Oxford Science Publications, 2017.

  22. K. Peplinski and A. Mozer, J. Polish CIMAC, 7, 231 (2012).

    Google Scholar 

  23. A. Kaye, “Non-Newtonian Flow in Incompressible Fluids”, College of Aeronautics Cranfield, 1962. http://resolver.tudelft.nl/uuid:8097943d-264b-41cd-8176-a0d22ce19984 (Accessed May 18, 2020).

  24. B. Bernstein, E. Kearsley, and L. Zapas, Trans. Soc. Rheol., 7, 391 (1963).

    Article  Google Scholar 

  25. Accuform, “Accuform B-SIM V2.5 Reference-Blow Molding Simulation”, https://www.t-sim.com/Refbsim/kbkz.htm (Accessed May 18, 2020).

  26. M. Wagner and A. Demarmels, J. Rheol., 34, 943 (1990).

    Article  Google Scholar 

  27. M. Wagner and J. Schaeffer, Rheol. Acta, 33, 506 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gregoriou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lontos, A., Gregoriou, A. The Preliminary Simulated Effect of Stretching and Blowing Combination on the Wall Thickness Distribution of 1.5Lt PET Bottle During ISBM Process. Fibers Polym 22, 2170–2176 (2021). https://doi.org/10.1007/s12221-021-1027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-1027-5

Keywords

Navigation