Skip to main content
Log in

Stretch blow moulding of PET; structure development and constitutive model

  • ESAFORM_BELFAST
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Microstructure of PET in stretch blow moulding is studied combining controlled tension followed by quenching, free-blow and ISBM. Due to quenching, observed final microstructure is often closer to a mesophase than to crystal. Texture is, for its part, controlled by the loading path. In fact stretching only induces appearance of an oriented precursor-phase that will become a crystal during cooling steps providing that this latter is slow enough. Microstructure evolution does not obey the classical “nucleation –growth” schematic. This enlightens development of constitutive models demonstrating the irrelevance of the crystallinity ratio as parameter and of the Avrami-like approach as part of the model. One, model based on revisited network approach is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Pressure is not constant because volume increases. The actual 7 bar-nominal pressure corresponds, in fact, to a constant air flux.

  2. (010) planes are roughly perpendicular to the phenyl ring of the monomer. (011) planes contain chain axis.

References

  1. Gorlier E, Haudin J-M, Billon N (2001) Strain-induced crystallisation in bulk amorphous PET under uni-axial loading. Polymer 42:9541–9549. doi:10.1016/S0032-3861(01)00497-9

    Article  Google Scholar 

  2. Blundell DJ, Mac Kerron DH, Fuller W, Mahendrasingam A, Martin C, Oldman RJ, Rule RJ, Riekel C (1996) Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation. Polymer 37(15):3303–3311. doi:10.1016/0032-3861(96)88476-X

    Article  Google Scholar 

  3. Welsh GE, Blundell DJ, Windle AH (1998) A transient liquid crystalline phase as a precursor for crystallization in random co-polyester fibers. Macromolecules 31(21):7562–7565. doi:10.1021/ma980536t

    Article  Google Scholar 

  4. Asano T, Balta Calleja FJ, Flores A, Tanigaki M, Forhad Mina M, Sawatari C, Itagaki H, Takahashi H, Hatta I (1999) Crystallization of oriented amorphous poly(ethylene terephthalate) as revealed by X-ray diffraction and microhardness. Polymer 40(23):6475–6484. doi:10.1016/S0032-3861(98)00839-8

    Article  Google Scholar 

  5. Mahendrasingam A, Martin C, Fuller W, Blundell DJ, Oldman RJ, Mac Kerron DH, Harvie JL, Riekel C (2000) Observation of a transient structure prior to strain-induced crystallization in poly(ethylene terephthalate). Polymer 41(3):1217–1221. doi:10.1016/S0032-3861(99)00461-9

    Article  Google Scholar 

  6. Mahendrasingam A, Martin C, Fuller W, Blundell DJ, Oldman RJ, Harvie JL, MacKerron DH, Riekel C, Engstrom P (1999) Effect of draw ratio and temperature on strain-induced crystallisation of poly(ethylene terephthalate) at fast draw rates. Polymer 40(20):5553–5565. doi:10.1016/S0032-3861(98)00770-8

    Article  Google Scholar 

  7. Mahendrasingam A, Blundell DJ, Martin C, Fuller W, MacKerron DH, Harvie JL, Oldman RJ, Riekel C (2000) Influence of temperature and chain orientation on the crystallisation of poly(ethylene terephthalate) during fast drawing. Polymer 41(21):7803–7814. doi:10.1016/S0032-3861(00)00129-4

    Article  Google Scholar 

  8. Mahendrasingam A, Blundell DJ, Wright AK, Urban V, Narayanan T, Fuller W (2003) Observation of structure development during crystallisation of oriented poly(ethylene terephthalate). Polymer 44(19):5915–5925. doi:10.1016/S0032-3861(03)00542-1

    Article  Google Scholar 

  9. Blundell DJ, Mahendrasingam A, Martin C, Fuller W, MacKerron DH, Harvie JL, Oldman RJ, Riekel C (2000) Orientation prior to crystallisation during drawing of poly(ethylene terephthalate). Polymer 41(21):7793–7802. doi:10.1016/S0032-3861(00)00128-2

    Article  Google Scholar 

  10. Chaari F, Chaouche M, Doucet J (2003) Crystallization of poly(ethylene terephthalate) under tensile strain: crystalline developpement versus mechanical behaviour. Polymer 44:473–479. doi:10.1016/S0032-3861(02)00739-5

    Article  Google Scholar 

  11. Gupte KM, Motz H, Schultz JM (1983) Microstructure rearrangement during heat-treatment of melt-drawn poly(ethylene-terephthalate) fibers. J Polym Sci Polym Phys 21(10):1927–1953. doi:10.1002/pol.1983.180211005

    Article  Google Scholar 

  12. Salem DR (1992) Development of crystalline order during hot-drawing of poly(ethylene-terephthalate) film—influence of strain rate. Polymer 33(15):3182–3188. doi:10.1016/0032-3861(92)90232-L

    Article  Google Scholar 

  13. Salem DR (1992) Crystallization kinetics during hot-drawing of poly(ethylene-terephthalate) film—strain-rate draw-time superposition. Polymer 33(15):3189–3192. doi:10.1016/0032-3861(92)90233-M

    Article  Google Scholar 

  14. Poitou A, Ammar A, Marco Y, Chevalier L, Chaouche M (2002) Crystallization of polymers under strain: from molecular properties to macroscopic models. Comput Methods Appl Mech Eng 192(28–30):3245–3264. doi:10.1016/S0045-7825(03)00349-9

    Google Scholar 

  15. Peszkin PN, Schultz JM, Lin JS (1986) Kinetics of fiber heat-treatment. 2- Poly(ethylene-terephthalate) fibers. J Polym Sci Polym Phys 24(12):2591–2616. doi:10.1002/polb.1986.090241201

    Article  Google Scholar 

  16. Lee KG, Schultz JM (1993) The development of structure and mechanical-properties in poly(ethylene-terephthalate) fibers during heat-treatment under stress. Polymer 34(21):4455–4470. doi:10.1016/0032-3861(93)90152-Z

    Article  Google Scholar 

  17. Misra A, Stein RS (1979) Stress-induced crystallization of poly(ethylene-terephthalate). J Polym Sci Polym Phys Ed 17(2):235–257. doi:10.1002/pol.1979.180170205

    Article  Google Scholar 

  18. Jabarin SA (1984) Orientation studies of poly(ethylene-terephthalate). Polym Eng Sci 24(5):376–384. doi:10.1002/pen.760240513

    Article  Google Scholar 

  19. Cakmak M, Spruiell JE, White JL, Lin JS (1987) Small-angle and wide angle X-ray pole figure studies on simultaneous biaxially stretched poly(ethylene-terephthalate) (PET) films. Polym Eng Sci 27(12):893–905. doi:10.1002/pen.760271205

    Article  Google Scholar 

  20. Hoffmann D, Göschel U, Walenta E, Geiss D, Philipp B (1989) Investigations on supermolecular structure of poly(ethylene-terephthalate) samples of higher modulus. Polymer 30(2):242–247. doi:10.1016/0032-3861(89)90112-2

    Article  Google Scholar 

  21. Lapersonne P, Faisant de Champchesnel JB, Lorentz G, Tassin JF, Monnerie L, Bower DI, Ward IM (1993) Proc. 9th annual meeting of the polymer processing society, Manchester UK, PPS-9:99–100

  22. Göschel U, Urban G (1995) Supermolecular structure of oriented and semicrystalline poly(ethylene-terephthalate) as revealed by electron-density correlation-function from small-angle X-ray-scattering studies. Polymer 36(19):3633–3639. doi:10.1016/0032-3861(95)93764-D

    Article  Google Scholar 

  23. Jabarin SA (1992) Strain-induced crystallization of poly(ethylene-terephthalate). Polym Eng Sci 32(18):1341–1349. doi:10.1002/pen.760321802

    Article  Google Scholar 

  24. Greener J, Tsou AH, Blanton TN (1998) Physical and microstructural effects of heat setting in polyester films. Polym Eng Sci 39(12):2403–2418. doi:10.1002/pen.11629

    Article  Google Scholar 

  25. Wilson MPW (1974) Polymer 15(2):277–282

    Article  Google Scholar 

  26. Menary GH, Tan CW, Armstrong CG, Salomeia Y, Picard M, Billon N, Harkin-Jones EMA (2010) Validating injection stretch-blow molding simulation through free blow trials. Polym Eng Sci 50(5):1047–1057. doi:10.1002/pen.21555

    Google Scholar 

  27. Gorlier E, Agassant J-F, Haudin J-M, Billon N (2001) Experimental and theoretical study of the uni-axial deformation of amorphous Poly(ethylene terephthalate) above the glass transition temperature. Rubber Compos 30(2):48–55

    Article  Google Scholar 

  28. Picard M (2008) PhD thesis, Ecole Nationale Supérieure des Mines de Paris

  29. Göschel U (2002) Structure development and mechanical behavior during uniaxial drawing of PET, Hanbook of Thermoplastic Polyesters, vol.1, chapter 6. Wiley-VCH.

  30. Billon N (2012) New constitutive modelling for time-dependent mechanical behaviour of polymers close to glass transition; fundamentals and experimental validation. J App Polym Sci 125:4390–4401.

    Google Scholar 

  31. Edwards SF, Vilgis T (1986) The effect of entanglements in rubber elasticity. Polymer 27:483–492. doi:10.1016/0032-3861(86)90231-4

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted thanks to The European Commission and its support under the Framework 6 Program via the Apt-Pack strep project (STREP 505204–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Billon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billon, N., Picard, M. & Gorlier, E. Stretch blow moulding of PET; structure development and constitutive model. Int J Mater Form 7, 369–378 (2014). https://doi.org/10.1007/s12289-013-1131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1131-1

Keywords

Navigation