Skip to main content
Log in

Experimental Study of Thickness Gradient and Flow Simulation in VARTM Process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Vacuum assisted resin transfer moulding (VARTM) process is widely used for manufacturing composite products. It is very difficult to manufacture a composite component with small dimension tolerance using VARTM process. In this research paper, carbon fiber reinforced polymer (CFRP) flat plates have been manufactured using the VARTM process with a different combination of process parameters. The carbon fiber laminates with different thickness have been manufactured using the VARTM process. The thickness of manufactured components has been measured at different locations using non-contact type 3D scanning techniques. The warpage has been determined for each manufactured components. The compaction pressure has been measured using pressure gauge at a different location during manufacturing. The thickness variation, pressure variation and volume fraction have been determined across the length for each manufactured components for different thickness laminates. The mould filling time has been calculated using the numerical approach in ANSYS Fluent software and the same has been compared with experimental results. The percentage difference between the experimental and numerical approach has been found within 5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Mazumdar, “Composites Manufacturing: Materials, Product, and Process Engineering”, CRC Press, 2002.

    Google Scholar 

  2. A. K. Kaw, “Mechanics of Composite Materials”, CRC Press, 2006.

    Google Scholar 

  3. B. Yenilmez, M. Senan, and E. M. Sozer, Compos. Sci. Technol., 69, 1710 (2009).

    Article  CAS  Google Scholar 

  4. X. Song, Ph. D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 2003.

    Google Scholar 

  5. A. Hammami and B. R. Gebart, Polym. Compos., 21, 28 (2000).

    Article  CAS  Google Scholar 

  6. D. Yuexin, T. Zhaoyuan, Z. Yan, and S. Jing, Chinese J. Aeronautics, 21, 370 (2008).

    Article  Google Scholar 

  7. D. Modi, M. Johnson, A. Long, and C. Rudd, Compos. Sci. Technol., 69, 1458 (2009).

    Article  CAS  Google Scholar 

  8. N. C. Correia, F. Robitaille, A. C. Long, C. D. Rudd, P. Simacek, and S. G. Advani, Compos. Part A Appl. Sci. Manuf., 36, 1645 (2005).

    Article  Google Scholar 

  9. C. Arulappan, A. Duraisamy, D. Adhikari, and S. Gururaja, J. Reinf. Plast. Compos., 34, 1 (2015).

    Article  Google Scholar 

  10. B. W. Grimsley, P. Hubert, X. L. Song, R. J. Cano, A. C. Loos, and R. B. Pipes, International SAMPE Technical Conference, 33 (2001).

  11. M. A. Yalcinkaya and E. M. Sozer, J. Reinf. Plast. Compos., 33, 2136 (2014).

    Article  Google Scholar 

  12. C. D. Williams, S. M. Grove, and J. Summerscales, Compos. Part A Appl. Sci. Manuf., 29, 111 (1998).

    Article  Google Scholar 

  13. K. D. Tackitt and S. M. Walsh, Mater. Manuf. Process, 20, 607 (2007).

    Article  Google Scholar 

  14. R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, Compos. Part A Appl. Sci. Manuf., 42, 782 (2011).

    Article  Google Scholar 

  15. R. J. Johnson and R. Pitchumani, Compos. Sci. Technol., 67, 669 (2007).

    Article  CAS  Google Scholar 

  16. R. Mathur, D. Heider, C. Hoffmann, J. W. Gillespie, S. G. Advani, and B. K. Fink, Polym. Compos., 22, 477 (2001).

    Article  CAS  Google Scholar 

  17. R. Chen, C. Dong, Z. Liang, C. Zhang, and B. Wang, Polym. Compos., 25, 146 (2004).

    Article  CAS  Google Scholar 

  18. A. Hammami, Polym. Compos., 22, 337 (2001).

    Article  CAS  Google Scholar 

  19. D. Bender, J. Schuster, and D. Heider, Compos. Sci. Technol., 66, 2265 (2006).

    Article  CAS  Google Scholar 

  20. W. B. Young, K. Han, L. H. Fong, L. J. Lee, and M. J. Liou, Polym. Compos., 12, 391 (1991).

    Article  CAS  Google Scholar 

  21. R. Sadeghian, S. Gangireddy, B. Minaie, and K. T. Hsiao, Compos. Part A Appl. Sci. Manuf., 37, 1787 (2006).

    Article  Google Scholar 

  22. M. A. Yalcinkaya, B. Caglar, and E. M. Sozer, J. Reinf. Plast. Compos., 36, 491 (2016).

    Article  Google Scholar 

  23. C. K. Huang and S. Y. Yang, Compos. Part A Appl. Sci. Manuf., 28, 891 (1997).

    Article  Google Scholar 

  24. J. Summerscales and T. J. Searle, Proc. IMechE Part L: J. Materials: Design and Applications, 219, 45 (2005).

    Google Scholar 

  25. P. Simacek and S. G. Advani, Compos. Sci. Technol., 67, 2757 (2007).

    Article  CAS  Google Scholar 

  26. R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, Compos. Part A Appl. Sci. Manuf., 42, 782 (2011).

    Article  Google Scholar 

  27. M. K. Kang, W. I. Lee, and H. T. Hahn, Compos. Part A Appl. Sci. Manuf., 32, 1553 (2001).

    Article  Google Scholar 

  28. N. Kuentzer, P. Simacek, S. G. Advani, and S. Walsh, Compos. Part A Appl. Sci. Manuf., 38, 802 (2007).

    Article  Google Scholar 

  29. C. Dong, Compos. Part A Appl. Sci. Manuf., 37, 1316 (2006).

    Article  Google Scholar 

  30. R. Zeiler, U. Khalid, C. Kuttner, M. Kothmann, D. J. Dijkstra, A. Fery, and V. Altstädt, AIP Conference Proceedings, 1593, 503 (2014). Experimental Study of Parameters in VARTM Process Fibers and Polymers 2020, Vol.21, No.2 391

    Article  CAS  Google Scholar 

  31. C. D. Rudd, A. C. Long, P. Mcgeehin, and P. Smith, Polym. Compos., 17, 52 (1996).

    Article  CAS  Google Scholar 

  32. P. Simacek and S. G. Advani, Polym. Compos., 25, 355 (2004).

    Article  CAS  Google Scholar 

  33. A. Gokce, M. Chohra, S. G. Advani, and S. M. Walsh, Compos. Sci. Technol., 65, 2129 (2005).

    Article  CAS  Google Scholar 

  34. J. A. Acheson, P. Simacek, and S. G. Advani, Compos. Part A Appl. Sci. Manuf., 35, 159 (2004).

    Article  Google Scholar 

  35. D. B. Shah, K. M. Patel, A. I. Patel, V. Pariyal, and S. J. Joshi, Compos. Part A Appl. Sci. Manuf., 115, 134 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge to Institute of Technology, Nirma University for financial support as well as provide a facility for performing experiments in entire research work. The authors are also acknowledged to M/s. KR Composites Pvt. Ltd., Surat, India and M/s. Vactech Composites Pvt. Ltd., Vapi, India for providing the consolidation material free of cost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval B. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajjar, T., Shah, D.B., Joshi, S.J. et al. Experimental Study of Thickness Gradient and Flow Simulation in VARTM Process. Fibers Polym 21, 384–391 (2020). https://doi.org/10.1007/s12221-020-9609-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9609-1

Keywords

Navigation